Report no. RDM/WMA02/00/CON/0516

DEPARTMENT: WATER AND SANITATION CHIEF DIRECTORATE: WATER ECOSYSTEMS DIRECTORATE: RESERVE DETERMINATION

DETERMINATION, REVIEW AND IMPLEMENTATION OF THE RESERVE IN THE OLIFANTS/LETABA SYSTEM

REPORT TITLE: ECOLOGICAL SPECIFICATIONS REPORT

Final

December 2016

2016

DEPARTMENT: WATER AND SANITATION

Directorate: Reserve Determination

DETERMINATION, REVIEW AND IMPLEMENTATION OF THE RESERVE IN THE OLIFANTS/LETABA SYSTEM

WP10940

ECOLOGICAL SPECIFICATIONS REPORT

FINAL

REPORT NO.: RDM/WMA02/00/CON/0516

DECEMBER 2016

REFERENCE

This report is to be cited as:

Chief Directorate: Water Ecosystems. Department of Water and Sanitation, South Africa, December 2016. DETERMINATION, REVIEW AND IMPLEMENTATION OF THE RESERVE IN THE OLIFANTS/LETABA SYSTEM: Ecological Specifications Report. Report No: RDM/WMA02/00/CON/0516

Prepared by:

Golder Associates Africa, Wetland Consulting Services and JMM Stassen

Title:	Ecological Specifications Report							
Authors:	Priya Moodley, Eddie van Wyk, Gary Marneweck, Wynand Vlok, Retha Stassen, Trevor Coleman							
Project Name:	Determination, Review and Implementation of the Reserve in the Olifants/Letaba System: WP 10940							
DWA Report No:	RDM/WMA02/00/CON/0516							
Status of Report:	Final							
First Issue:	August 2016							
Final Issue:	February 2017							

Professional Service Providers: Golder Associates Africa/Wetland Consulting Services/ JMM Stassen and WRP Consulting Engineers

Approved for the PSP by:

.....

Trevor Coleman

Study Leader

DEPARTMENT OF WATER AND SANITATION

Chief Directorate: Water Ecosystems

Approved for DWS by:

.....

Yakeen Atwaru Director: Reseerve Determination

.....

Ndileka Mohapi Chief Director: Water Ecosystems

DOCUMENT INDEX

Reports as part of this project:

Bold type indicates this report.

REPORT INDEX	REPORT NUMBER	REPORT TITLE
1.0	RDM/WMA02/00/CON/0115	Inception Report
2.0	RDM/WMA02/00/CON/0215	Information and Data Gap Analysis Report
3.0	RDM/WMA02/00/CON/0315	Field Survey Report
4.0	RDM/WMA02/00/CON/0116	Eco-Classification Report
5.0	RDM/WMA02/00/CON/0216	Quantification of Ecological Water Requirements Report
6.0	RDM/WMA02/00/CON/0316	Groundwater Component Report
7.0	RDM/WMA02/00/CON/0416	Wetlands Component Report
8.0	RDM/WMA02/00/CON/0516	Ecological Specifications Report

LIST OF ABBREVIATIONS

CD: WE	Chief Directorate: Water Ecosystems
DRM	Desktop Reserve Model
DWA	Department of Water Affairs
DWS	Department of Water and Sanitation
DWAF	Department of Water Affairs and Forestry
EC	Electrical Conductivity
EIS	Ecological importance and sensitivity
ES	Ecological Sensitivity
EWR	Ecological Water Requirements
FIFHA	Flow, Invertebrate, Fish, Habitat Assessment
FRAI	Fish Response Assessment Index
GRA2	Groundwater Resource Assessment Phase II
GRDM	Groundwater Resource Directed Measures
KNP	Kruger National Park
MIRAI	Macro-invertebrate Response Assessment Index
MC	Management Class
NWA	National Water Act
PES	Presentation Ecological State
RDM	Resource Directed Measures
REC	Recommended Ecological Category
RHP	River Health Programme
RQOs	Resource Quality Objectives
RQS	Resource Quality Services
TEC	Target Ecological Category
WE	Water Ecosystems
WMA	Water Management Area
WMS	Water Management System
WRCS	Water Resource Classification System
WRPM	Water Resources Planning Model
WWTW	Wastewater Treatment Works

EXECUTIVE SUMMARY

The Chief Directorate: Water Ecosystems has recently completed the study 'Determination, Review and Implementation of the Reserve in the Olifants/Letaba System'. With water resources in the Olifants Water Management Area (WMA 2) having been classified and Resource Quality Objectives determined (2011-2014), the preliminary Reserve determined in 2001 for the Olifants System and in 2006 for the Letaba System, is now required to be superseded by the Reserve. With the preliminary Reserve having been determined nine years prior to the water resource classification, a review and update was required to ensure that the Reserve is in accordance with the water resource classes and is applicable to the current system needs and demands.

The purpose of this study was thus to determine the Reserve in the Olifants\Letaba System; with the aim of specifically addressing ecological gaps and reviewing and updating the preliminary Reserves that have been determined.

The Ecological Water Requirements (EWR) were determined for the rivers in the Olifants/Letaba system. The groundwater Reserve has also been determined and wetland systems have been prioritised. Based on these results and the review of the eco-classification, the objectives for the protection of the ecosystem have now been defined through Ecological Specifications (ecospecs) and monitoring requirements for the maintenance at each Ecological Water Requirement (EWR) sites as well as biological moitoring at additional sites. The Ecospecs are intended to provide the quantifiable and enforceable descriptors of the quantity, quality and habitat and biotic integrity as they pertain to the ecological objectives for a particular water resource. These are the values of parameters (usually maximum concentrations) that should not be exceeded in order to meet the Target Ecological Category (TEC) specified for the water resource. The ecospecs (ecological information only) relate to and expand on the resource quality objectives that have been set for the Olifants/Letaba system.

This report describes the ecological specifications and monitoring requirements for maintenance of the Reserve in the water resources of the Olifants, Letaba and Shingwedzi catchment area as they relate to hydrology, water quality, habitat and biota of rivers, and groundwater and wetlands.

These ecospecs will support the the attainment of the Reserve and will need to be applied in conjunction with the implementation plan. The ecospecs form the basis of identified implementation actions that must be achieved.

TABLE OF CONTENTS

1.	INTRODUCTION10								
1.1	BACKGROUND 10								
1.2	PURPOSE OF THE STUDY 10								
1.3	STUDY METHODOLOGY 11								
1.4	ECOLOGICAL SPECIFICATIONS								
1.5	PURPOSE OF THE REPORT 12								
2	STUDY AREA, ECOLOGICAL CLASSIFICATION AND RECOMMENDED RESERVE.12								
2.1	ECOLOGICAL SITES AND CLASSIFICATION								
2.2	TARGET ECOLOGICAL WATER REQUIREMENTS								
3	ECOLOGICAL SPECIFICATIONS: DESCRIPTORS USED TO SPECIFY ECOLOGICAL CONDITION								
3.1	FLOW								
3.2	WATER QUALITY								
3.3	MACROINVERTEBRATES								
3.4	FISH								
3.5	HABITAT INTEGRITY								
4	ECOLOGICAL SPECIFICATIONS AND MONITORING								
4.1	FLOW								
4.2	WATER QUALITY								
4.3	FISH, MACROINVERTEBRATES AND HABITAT INTEGRITY								
4.3	1 EWR SITES WITHIN THE OLIFANTS, LETABA AND SHINGWEDZI CATCHMENT .								
4.3	2 BIOLOGICAL SITES WITHIN THE OLIFANTS, LETABA AND SHINGWEDZI CATCHMENT								
5	GROUNDWATER SPECIFICATIONS								
6	WETLAND SPECIFICATIONS								
7	REFERENCES193								

LIST OF TABLES

Table 1: Locality and EWR site information	18
Table 2: Locality and Biological moitoring site information	20
Table 3: Most impacted sites in the system	25
Table 4: Ecological Water Requirements and Target Ecological Category (TEC) for the EV	VR sites
Table 5: EWR Requirements for Upper Elands: Olifants_ELA1	33
Table 6: EWR Requirements for Lower Wilge: Olifants_EWR4	33
Table 7: EWR Requirements for the Upper Wilge: Olifants_WIL1	34
Table 8: EWR Requirements for the Olifants: Olifants_EWR1	34
Table 9: EWR Requirements for the Klein Olifants: Olifants_EWR3	34
Table 10: EWR Requirements for the Olifants: Olifants_EWR2	35
Table 11: EWR Requirements for the Kranspoortspruit: OLI_EWR8	35
Table 12: EWR Requirements for the Selons River: Olifants_SEL1	36
Table 13: EWR Requirements for the Olifants: Olifants_EWR 8	36
Table 14: EWR Requirements for the Lower Spekboom River: Olifants_SPE1	36
Table 15: EWR Requirements for the Upper Blyde: Olifants_BLY1	37
Table 16: EWR Requirements for the Olifants: Olifants_EWR11	37
Table 17: EWR Requirements for the Lower Blyde: Olifants_EWR12	37
Table 18: EWR Requirements for the Olifants: Olifants_EWR13	
Table 19: EWR Requirements for the Olifants: Olifants_EWR 16	
Table 20: EWR Requirements for the Olifants: Olifants_EWR5	
Table 21: EWR Requirements for the Lower Elands: Olifants_EWR6	
Table 22: EWR Requirements for the Olifants: Olifants_EWR7	
Table 23: EWR Requirements for the Steelpoort: Olifants_EWR9	40
Table 24: EWR Requirements for the Steelpoort: Olifants_EWR10	40
Table 25: EWR Requirements for the Upper Ga-Selati: Olifants_EWR14a	41
Table 26: EWR Requirements for the Lower Ga-Selati: Olifants_EWR14b	41
Table 27: EWR Requirements for the Spookspruit: SPK_EWR1	41
Table 28: EWR Requirements for the Ohrigstad River: OLI_EWR8	42
Table 29: EWR Requirements for the Dwars River: DWA_EWR1	42
Table 30: EWR Requirements for the Letaba: Letaba_EWR7	43
Table 31: EWR Requirements for the Letsitele: Letaba_EWR2	43
Table 32: EWR Requirements for the Letsitele: Letaba_EWR1	43

Table 33: EWR Requirements for the Broederstroom: Letaba_BRO144
Table 34: EWR Requirements for the Shingwedzi: Shingwedzi_SHI1
Table 35: EWR Site: Upper Elands: Olifants_ELA1 - EcoSpecs relating to Physico-chemical data. 45
Table 36: EWR Site: Lower Wilge: Olifants_EWR4: EcoSpecs relating to Physico-chemical data. 46
Table 37: EWR Site: Upper Wilge: Olifants_WIL1 - EcoSpecs relating to Physico-chemical data .47
Table 38: EWR Site: Olifants: Olifants_EWR1 - EcoSpecs relating to Physico-chemical data48
Table 39: EWR Site: Klein Olifants: Olifants_EWR3 - EcoSpecs relating to Physico-chemical data
Table 40: EWR Site: Olifants: Olifants_EWR2 - EcoSpecs relating to Physico-chemical data50
Table 41: EWR Site: Kranspoortspruit: OLI_EWR3 - EcoSpecs relating to Physico-chemical data
Table 42: EWR Site: Selons: Olifants_SEL1 - EcoSpecs relating to Physico-chemical data52
Table 43: EWR Site: Olifants: Olifants_EWR8 - EcoSpecs relating to Physico-chemical data53
Table 44: EWR Site: Spekboom: Olifants_SPE1 - EcoSpecs relating to Physico-chemical data 54
Table 45: EWR Site: Upper Bylde: Olifants_BLY1 - EcoSpecs relating to Physico-chemical data .55
Table 46: EWR Site: Olifants: Olifants_EWR11 - EcoSpecs relating to Physico-chemical data56
Table 47: EWR Site: Lower Bylde: Olifants_EWR12 - EcoSpecs relating to Physico-chemical data
Table 48: EWR Site: Olifants: Olifants_EWR13 - EcoSpecs relating to Physico-chemical data58
Table 49: EWR Site: Olifants: Olifants_EWR16 - EcoSpecs relating to Physico-chemical data59
Table 50: EWR Site: Olifants: Olifants_EWR5 - EcoSpecs relating to Physico-chemical data60
Table 51: EWR Site Lower Elands: Olifants_EWR6 - EcoSpecs relating to Physico-chemical data
Table 52: EWR Site Olifants: Olifants_EWR7 - EcoSpecs relating to Physico-chemical data62
Table 53: EWR Site Steelpoort: Olifants_EWR9 - EcoSpecs relating to Physico-chemical data.63
Table 54: EWR Site Lower Steelpoort: Olifants_EWR10 - EcoSpecs relating to Physico-chemical
data64
Table 55: EWR Site Upper Ga-Selati: Olifants_EWR14a - EcoSpecs relating to Physico-chemical
data65
Table 56: EWR Site Lower Ga-Selati: Olifants_EWR14b - EcoSpecs relating to Physico-chemical
data66

Final

Table 57: EWR Site Spookspruit: SPK_EWR1 - EcoSpecs relating to Physico-chemical data	67
Table 58: EWR Site Dwars River: DWA_EWR1 - EcoSpecs relating to Physico-chemical dat	a.68
Table 59: EWR Site Ohrigstad: OLI_EWR8 - EcoSpecs relating to Physico-chemical data	69
Table 60: EWR Site: Letaba: Letaba_EWR7- EcoSpecs relating to Physico-chemical data	70
Table 61: EWR Site Letsitele: Letaba_EWR2 - EcoSpecs relating to Physico-chemical data.	71
Table 62: EWR Site: Great Letaba: Letaba_EWR1 - EcoSpecs relating to Physico-chemical	data
	72
Table 63: EWR Site: Broederstroom: Letaba_BRO1 - EcoSpecs relating to Physico-chemical	data
	73
Table 64: EWR Site: Shingwedzi: Shingwidzi_SHI1 - EcoSpecs relating to Physico-chemical	data 74
Table 65: Ecological specifications for Upper Elands River: Olifants ELA1	
Table 66: Ecological specifications for Lower Wilde River: Olifants EWR4	78
Table 67: Ecological specifications for the Upper Wilge River: Olifants WIL1	80
Table 68: Ecological specifications for the Olifants River: Olifants EWR1	82
Table 69: Ecological specifications for the Klein Olifants River: Olifants EWR3	84
Table 70: Ecological specifications for the Olifants River: Olifants_EWR2	86
Table 71: Ecological specifications for the Kranspoortspruit: OLI-EWR3	87
Table 72: Ecological specifications for the Selons River: Olifants_SEL1	89
Table 73: Ecological specifications for the Olifants River: Olifants_ EWR8	90
Table 74: Ecological specifications for the Lower Spekboom River: Olifants_SPE1	92
Table 75: Ecological specifications for the Upper Bylde River: Olifants_BLY1	93
Table 76: Ecological specifications for the Olifants River: Olifants_ EWR11	94
Table 77: Ecological specifications for the Lower Blyde River: Olifants_EWR12	96
Table 78: Ecological specifications for the Olifants River: Olifants_EWR13	98
Table 79: Ecological specifications for the Olifants River: Olifants_EWR16	99
Table 80: Ecological specifications for the Letaba River: Letaba_EWR7	101
Table 81: Ecological specifications for the Letsitele River: Letaba_EWR2	103
Table 82: Ecological specifications for the Great Letaba River: Letaba_EWR1	105
Table 83: Ecological specifications for the Broederstroom: Letaba_BRO1	107
Table 84: Ecological specifications for the Shingwidzi: Shingwidzi_SHI1	108
Table 85: Ecological specifications for the Steenkoolspruit: Olifants_STE1	110
Table 86: Ecological specifications for the Bronkhorstspruit: Olifants_BRO1	111
Table 87: Ecological specifications for the Timbavati: Olifants_TIM1	112
Table 88: Ecological specifications for the Steelpoort: OLI_GRO1	113

Table 89: Ecological specifications for the Langspruit: Olifants_LAN1
Table 90: Ecological specifications for the Masala: Olifants_MAS1115
Table 91: Ecological specifications for the Klip: Olifants_KLI1116
Table 92: Ecological specifications for the Dwars: Olifants_DWA1117
Table 93: Ecological specifications for the Steenkoolspruit: Olifants_STE2118
Table 94: Ecological specifications for the Dwars-in-die-wegspruit: Olifants_DWA2119
Table 95: Ecological specifications for the Steenkoolspruit: Olifants_STE3
Table 96: Ecological specifications for the Olifants: Olifants_OLI1 121
Table 97: Ecological specifications for the Klein-Olifants: Olifantsa_K_OLI1122
Table 98: Ecological specifications for the Klein-Olifants: Olifants_K_OLI2
Table 99: Ecological specifications for the Elands: Olifants_ELA2
Table 100: Ecological specifications for the Groot Dwars: Olifants_G_DWA1125
Table 101: Ecological specifications for the Steelpoort: Olifants_STEP1
Table 102: Ecological specifications for the Mohlapitse: Olifants_MOH1 127
Table 103: Ecological specifications for the Mohlapitse: Olifants_MOH2 128
Table 104: Ecological specifications for the Motse: Olifants_MOT1129
Table 105: Ecological specifications for the Olifants: Olfants_OLI2
Table 106: Ecological specifications for the Letaba: Letaba_LET2131
Table 107: Ecological specifications for the Tsende: Letaba_TSE1 132
Table 108: Ecological specifications for the Letaba: Letaba_LET1
Table 109: Ecological specifications for the Klein Letaba: Letaba_K_LET1
Table 110: Ecological specifications for the Groot Letaba: Letaba_G_LET1
Table 111: Ecological specifications for the Nsama: Letaba_NSA1136
Table 112: Ecological specifications for the Klein Letaba: Letaba_K_LET2
Table 113: Ecological specifications for the Groot Letaba: Letaba_G_LET2 138
Table 114: Ecological specifications for the Groot Letaba: Letaba_G_LET3
Table 115: Ecological specifications for the Groot Letaba: Letaba_G_LET4140
Table 116: Ecological specifications for the Broederstroom: Letaba_BRO2141
Table 117: Ecological specifications for the Politsi: Letaba_POL1
Table 118: Ecological specifications for the Shisha: Shingwedzi_SHIS1143
Table 119: Ecological specifications for the Mphongolo: Shingwedzi_MPH2 144
Table 120: Ecological specifications for the Mphongolo: Shingwedzi_MPH1 145
Table 121: Ecological specifications for the Phugwane: Shingwedzi_PHU1146
Table 122: Ecological specifications for the Shingwedzi: Shingwidzi_SHI2147
Table 123: Ecological specifications for the Shingwedzi: Shingwidzi_SHI3 148

wetlands
Table 126: Wetland ecological specifications and monitoring requirements for the selected priority
motivation
Table 125: List of the priority wetlands in the Olifants, Letaba and Shingwedzi catchments and the
Table 124: Groundwater quantity and quality indices per quaternary catchment and Reserve150

LIST OF FIGURES

Figure 1: Olifants/Letaba System study area	14
Figure 2: Map of the Olifants Catchment with EWR sites, and additional biological monit	oring sites
	15
Figure 3: Map of the Letaba Shingwedzi Catchments illustrating the EWR sites and	additional
biological monitoring sites	16

APPENDICES

APPENDIX A RUL AND EWR TABLES

1. INTRODUCTION

1.1 BACKGROUND

Chapter 3 of the National Water Act (Act No. 36 of 1998) (NWA) was specifically developed for the protection of the water resources of the country and requires the implementation of Resource Directed Measures (RDM) that is based on the guiding principles of sustainability and equity. Sustainability encompasses both the long- and short-term protection of water resources to ensure that they can be developed and used effectively into the future.

Resource Directed Measures provides for the protection of water resources through the Classification of water resources, determination of Resource Quality Objectives (RQOs) and determination of the Reserve. These measures collectively aim to ensure that a balance is reached between the need to protect and sustain water resources on one hand and the need to develop and use them on the other.

The Reserve specifies the quantity, quality, habitat and biotic integrity requirements necessary for the protection of the resource and has priority over other water uses. Two components are provided for, namely:

- (i) Basic human needs (BHN), ensuring that the essential needs of individuals served by the water resource in question are provided for; and
- (ii) The ecological Reserve ensuring the water required to protect aquatic ecosystems of the water resource are provided for.

The ecological Reserve is not intended to protect the aquatic ecosystem *per se*, but to maintain aquatic ecosystems in such a way that their integrity remains intact and they can continue to provide the goods and services to society and is specified for groundwater, wetlands, rivers and estuaries.

The Chief Directorate: Water Ecosystems has through a recently completed study determined the Reserve for the water resources in the Olifants Water Management Area (WMA 2) specifically for the Olifants and Letaba Systems; with a preliminary Reserve being determined for the Shingwedzi catchment.

1.2 PURPOSE OF THE STUDY

The study was aimed at specifically addressing ecological gaps and reviewing and updating the preliminary Reserves that had been previously determined.

The previous relevant studies completed for these systems were:

- Determination of the preliminary Reserve for the Olifants System (2001) and for the Letaba system (2006); and
- Classification and determination of RQOs for the water resources of the Olifants River catchment (2011-2013) and for the water resources of the Letaba River catchment (2012-2014);

Due to the preliminary Reserve having been determined in 2001 and 2006 prior to the water resource classification in 2011-2014, a review and update was required to ensure that the Reserve is in accordance with the water resource classes and is applicable to the current system

needs. In addition the hydrology applied to the Olifants preliminary Reserve in 2001, was out of date, and the Eco-Classification models and other tools did not exist or were in its infancy.

As the classes of the water resources for the Olifants/Letaba system have now been determined, the Reserve can be determined and gazetted.

1.3 STUDY METHODOLOGY

The update and review of the preliminary Reserve was achieved through:

- Review and analysis of existing information;
- Filling in of the ecological gaps through Rapid III Reserve determinations and biological surveys of the priority sites identified in the Olifants, Letaba and Shingwedzi catchments. Where possible, the EcoClassification models (required to evaluate scenarios) were populated and run to obtain updated results.
- The EWRs were determined using new hydrology and in other instances adjusted EWRs considering new present day hydrology.
- Evaluation of ecological consequences and operational considerations based on the planning scenarios that considered the impact of the different ecological categories on the yield of the dams in the system;
- Adoption of the recommended scenario and defining the ecological specifications and monitoring requirements for maintenance of the Reserve for the rivers in the Olifants, Letaba and Shingwedzi catchments.
- Specifications for the groundwater resources and wetlands are also determined based on the assessments undertaken.

The priority sites selected for this study included the following:

- Re-surveying of existing EWR sites where no new information after the initial preliminary Reserves in 2001 and 2006 were available; and
- The re-assessment of existing EWR sites using the hydraulic information from the previous Reserve studies with updated biological information.
- Additional sites were also identified in terms of Water Resource Classification where
 protection of the ecological integrity of certain water resources is required, due to the
 present ecological state being in a better condition than the overall IUA Class and nested
 ecological category.

The quantification of the Ecological Water Requirements (EWR), based on the Rapid III level of detail for the Priority Rivers as identified for the study area has been determined and evaluation of ecological consequences of meeting these has been evaluated. Based on the assessment, the Reserve (selected target ecological category (TEC)) for all the key EWR and priority sites has been determined.

In order that quantifiable and descriptive information regarding flows, water quality, habitat and biotic integrity, which describe both the present state of the system and conditions for the TEC, ecological specifications and monitoring requirements for maintenance of the Reserve for the rivers in the Olifants, Letaba and Shingwedzi catchments are defined.

The specifications for the groundwater resources and wetlands are also determined based on the assessments undertaken.

1.4 ECOLOGICAL SPECIFICATIONS

Ecological specifications (ecospecs) are derived from the Resource Quality Objectives (RQOs) for the resource (specifically rivers, wetlands, estuaries and groundwater). RQOs are requirements for water quantity, quality and habitat and biotic integrity to be maintained in the resource. RQOs may encompass ecological, economic, social and political objectives. The ecospecs are intended to provide the quantifiable and enforceable descriptors of the RQOs as they pertain to the ecological objectives for a particular resource (in this case a particular river reach).

1.5 PURPOSE OF THE REPORT

This report:

- identifies the Ecospecs that must be monitored that represent the condition of the target ecological categories of the Reserve (at key sites);
- provides a pragmatic monitoring programme of the Reserve as determined for the key rivers of the Olifants, Letaba and Shingwedzi catchments;
- defines the specifications for groundwater resources, and
- refers to the specifications for the wetlands and wetland systems (separate report).

The ecological specifications are not intended as a stand-alone report, and should be read in conjunction with Report 4: Eco-classification Report (Report No. RDM/WMA02/00/CON/0116) and Report 5: Quantification of the Ecological Water Requirements (Report No. RDM/WMA02/00/CON/0216), as the ecological consequences and much of the background information and reasoning behind the Ecospecs and related monitoring activities presented in here is contained in these reports.

2 STUDY AREA, ECOLOGICAL CLASSIFICATION AND RECOMMENDED RESERVE

The study area is the Olifants WMA (WMA 2) and includes the Olifants, Letaba and Shingwedzi systems. The spatial extent of the area includes tertiary drainage regions B11, B12, B20, B31, B32, B41, B42, B51, B52, B60, B71, B72 and B73 in the Olifants system, B81, B82 and B83 in the Letaba area, and B90, the Shingwedzi catchment.

The Olifants River originates at Trichardt, east of Johannesburg, and flows through the Kruger National Park. The Letaba River joins the Olifants River upstream of the border into Mozambique, where they join the Limpopo River before discharging into the Indian Ocean. The Shingwedzi River is located mostly in the Kruger National Park and then into Mozambique before it joins the Limpopo River.

The Olifants System falls within three provinces (Gauteng, Mpumalanga and the Limpopo Province). The main tributaries of the Olifants River are the Wilge, Elands and Ga-Selati Rivers on the left bank and the Klein-Olifants, Steelpoort, Blyde, Klaserie and Timbavati Rivers on the right bank.

The Letaba River catchment is drained by the Groot Letaba River and its major tributaries are the Klein-Letaba, Middle Letaba, Letsitele and Molototsi Rivers. The Shingwedzi River and its major tributaries the Shisha, Mphongolo and Phugwane drain the Shingwedzi River catchment.

The Olifants WMA is a highly utilised and regulated catchment and like many other WMAs in South Africa, its water resources are becoming more stressed due to an accelerated rate of development and the scarcity of water resources. There is an urgency to ensure that water resources in the Olifants WMA are able to sustain their level of uses and be maintained at their desired ecological states.

The map of the study area is shown in **Figure 1**.

Figure 2 and **Figure 3** shows the catchment areas of the Olifants WMA and the EWR sites for which the Reserve has been determined. Additional sites for biological monitoring have been included to ensure the ecological integrity and necessary protection of these rivers remains intact. This additional sites will support the monitoring required for measuring compliance with the RQOs.

S:\GISS\Gis Projects\1417303_Olifants_Letaba\MXD\2016\Apr16\1537956_LocalityMap.mxd

Figure 1: Olifants/Letaba System study area

Figure 2: Map of the Olifants Catchment with EWR sites, and additional biological monitoring sites

S.\GISS\Gis Projects\1417303_Olifants_LetabaWIXD\2016'Dec16\1417303_Letaba_Shingwedzi_EWR_Priority_Bio_A4_v2.mxd

Figure 3: Map of the Letaba Shingwedzi Catchments illustrating the EWR sites and additional biological monitoring sites

2.1 ECOLOGICAL SITES AND CLASSIFICATION

Table 1 provides a summary of the information for all the EWR sites. These sites are where the ecological Reserve has been specified within the Olifants, Letaba and Shingwedzi catchments and ecological specifications are recommended. Furthermore, **Table 1** provides the site location coupled with the surrounding land based impacts.

These sites were selected based on the following criteria:

- Representative of a site per IUA;
- Should the site be located downstream of a large impoundment;
- Should the site be located within a protected area in terms of a Class 1 IUA;
- Where water quality was identified to be a major issue and further taking into account quality issues upstream of that particular site;
- Where flow was identified to be a major issue, and to further ensure adequate flow downstream of that site; and
- Whether the site requires protection with the purpose of achievinf the recommended ecological category in the Lower Olifants River within the Kruger National Park.

It is vital to ensure attention is placed on these priority EWR sites, as should the set ecological specifications be attained at these sites and provide an indication of the attainment of the Target Ecological Category (TEC), the crucial TEC of a C downstream at site Olifants_S16 (EWR16) on the Olifants in the Kruger National Park will be achieved. With this said, the DWS should still aim to implement the other EWR sites.

Table 2 provides a summary of additional monitoring sites in the study area where biotic specifications and/or conditions have been set to maintain the ecological integrity of the aquatic ecosystem (response components). This however defined in the absence of an EWR. This additional monitoring is related largely to rivers that are in a better ecological condition than that specified in terms of the water Resource Management Class. In such instances the present ecological state of these rivers is higher ecological category than that of the ecological category configuration of the IUA. Alternatively these include rivers where the ecological integrity has been comprised or degraded and requires intervention to a sustainable state.

A description of the most impacted sites are indicated in **Table 3**

Table 1: Locality and EWR site information

EWR site	Quaternary catchment/ Sub-reach	River	Coordinates	PES	EI_ES	REC	TEC	Site Location	Surrounding Impacts
Olifants Catchment									
Olifants_ELA1	B31C-00770	Upper Elands	-25.3031; 28.4631	C/D	Very high	с	С	The site is located on the Upper Elands River	 Very low flows Exposed soils (erosion) Agricultural activities Several small dams Artificial widening of river owing to a bridge High organic material content observed namely algae and silt. This can be attributed largely to leaves from canopy
Olifants_EWR4	B20J-00998	Lower Wilge	-25.6196; 28.9991	с	High	В	В	The site is located on the Wilge River downstream of the confluence of Saalboomspruit and Bronkhortspruit river.	 Flow velocity was very low Dense algae and fine sediments were observed Green algae dominate in fast flowing water Sediments noted out of channel and as a result less green algae Agricultural activities Upstream abstraction activities
Olifants_WIL1	B20F-01150	Upper Wilge	-25.8439; 28.8719	C/D	High	с	С	The site is located on the Upper Wilge River before the confluence with the Bronkhorstspruit River but upstream from the confluence with the Klein-Olifants	 Deeply incised banks that are collapsing. High abundance of algae and silt Some embeddedness. Low flow is restricted by undercut and root wads. Agricultural activities Open cast mining – lowering of baseflow capacities
Olifants_EWR1	B11J-01086	Olifants	-25.7592; 29.3096	D	Moderate	C/D	D	The site is located on the Olifants downstream of the confluence with the Spookspruit	 Very low flow rate Algae is dense Some silt present Water had a chemical smell Upstream cultivation Return flows from waste water treatment plants and inadequate treatment
Olifants_EWR3	B12E	Klein Olifants	-25.6736; 29.342	D	High	С	C/D	The site is located on the Klein-Olifants downstream from the Middleburg Dam and upstream of the confluence with the Olifants River.	 Very low flows Algae present Solid waste was observed in the river channel. Invasive plants (riparian) present Town development Downstream Middleburg dam Mining activities Industrial activities Informal settlements
Olifants_EWR2	B32A-00937	Olifants	-25.4963; 29.2546	с	High	B/C	B/C	The site is located on the Olifants River downstream from the confluence of the Wilge and Klein-Olifants River just upstream of Loskop Dam.	Very low flowsHigh algae
OLI_EWR3	B32A-00950	Kranspoortspruit	-25.4377; 29.4756	с	Very high	В	В	The site is located on the Kraanspoortspruit below the confluence of the Klip River.	 Water was discoloured Algae and silt was observed covering cobbles. Limited agricultural activities
Olifants_SEL1	B32C-00936	Selons	-25.3799; 29.4356	D	Very high	с	С	The site is located on the Selons upstream of the confluence with the Olifants and includes the Bobbejaansdoom and the Kruis rivers.	 Very low flows Exposed soils (erosion) Agricultural activities Several small dams Artificial widening of river due to incised and collapsing river banks High organic material content observed namely algae and silt. This can be attributed largely to bank collapse
Olifants_EWR8	B71D-00412	Olifants	-24.2399; 30.0825	с	Moderate	с	C/D	The site is located on the Olifants downstream of the Flag Boshielo Dam below the confluence with the Mohlapitse River.	Very low flowsHigh silt
Olifants_SPE1	B42H-00553	Lower Spekboom	-24.6942; 30.3613	с	High	B/C	с	The site is located on the Spekboom River	 Very low flows Water discoloured green with some silt present. Agricultural activities

EWR site	Quaternary catchment/ Sub-reach	River	Coordinates	PES	EI_ES	REC	TEC	Site Location	Surrounding Impacts
Olifants_BLY1	B60B-00566	Upper Blyde	-24.7344; 30.7783	с	High	в	В	The site is situated in the upper reaches of the Blyde River, upstream of the confluence with the Treur River and the Blyde River Canvon Reserve.	 Low flows High silt loads observed. Extensive agricultural activities (grazing, cultivation, forestry)
Olifants_EWR11	B71G-00428	Olifants	-24.3076; 30.7857	С	High	с	C/D	The site is located on the Olifants River upstream from the confluence of the Blyde River.	 Water was silty and substrate was smothered in fine silt Return flows from agricultural activities Upstream weir for water abstraction Abstraction is high Informal settlements Cattle grazing
Olifants_EWR12	B60J-00444	Lower Blyde	-24.4075; 30.8274	С	High	В	В	The site is located on the Blyde River just upstream of the confluence with the Olifants River.	 Very low flows Silt and algae present Intensive agricultural activities Excessive abstraction for agriculture Upstream weir Large upstream impoundment (Blyderivierpoort Dam)
Olifants_EWR13	B72D-00326	Olifants	-24.1284; 31.0146	С	Moderate	B/C	С	The site is located on the Olifants River 20km upstream from the Ga-Selati confluence, upstream of the Balule Nature Reserve Complex and Phalaborwa impacts (Ga-Selati River).	 Very low flows Some silt Low algae growth Discharge at the gauging weir B7H007 was used No hydraulic surveys undertaken Agricultural activities Human and cattle waste
Olifants_EWR16	B73H-00311	Olifants	-24.0494; 31.7318	D	High	B/C	С	This site is located on the Olifants River, the furthest downstream EWR site in the system approximately 6km upstream from the confluence with the Letaba River at the Olifants River Gorge (KNP Eastern border with Mozambique). It is below the confluence with the Timbavati River in the Park.	 Very low flows Some stringy algae observed at site Discharge at the gauging weir B7H015 as the weir just upstream of the site (B7H026) was still under construction) Upstream weir Industrial activities (Phalaborwa Industrial Complex)
Olifants_EWR5	B32D-00855	Olifants	-25.3040; 29.4220	с	High	с	С	The site is located on the Olifants River downstream from the confluence of the Selons River	 Exotic vegetation Agricultural activities - irrigation Effluent discharge
Olifants_EWR6	B31F-00654	Elands	-25.1160; 28.9565	E	Moderate	D	D	The site is located on the Elands River downstream of the Rhenosterkop Dam and Mkombo Nature Reserve	 Upstream weir Large upstream impoundment (Rhenosterkop Dam) Exotic vegetation
Olifants_EWR7	B51G-00482	Olifants	-24.5289; 29.5464	E	Moderate	D	D	The site is located on the Olifants River below Flag Bashielo Dam, upstream the confluence of the Ngwantsi	 Low flow Setllements Agricultural activities Siltation Human and cattle waste
Olifants_EWR9	B41H-00610	Steelpoort	-24.7750; 30.1650	D	High	C/D	C/D	The site is located on the middle reaches of Steelpoort River below the confluence of the Dwars (Steelpoort Park).	Flow impactsWater quality impacts
Olifants-EWR14b	B72K-00260	Lower Ga-Selati	-24.0225; 31.146667	E	Moderate	D	D	This site is located on the lower Ga-Selati River, near Foskor, (Lowveld Ecoregion), near the confluence with the Olifants River. This site was chosen because it is close to a biomonitoring site, and previous biological and hydraulic data were available.	 Water quality is poor Algal growth Sewage effluent impacts
SPK_EWR1	B11H-01161	Spookspruit	-25.8605; 29.4029	С	Moderate	с	С	This is an intermediate site located in lower reavhes of the Spookspruit upstream of its confluence with the Olifants River	Extensive miningAgricultural activitiesMine water discharges
DWA_EWR1	B41H-00640	Dwars	-24.8358; 30.08345	B/C	High	B/C	B/C	This site is located on the lower Dwars River upstream the confluence with the Steelpoort River	Platinum mining
Olifants_EWR10	B41K-00487	Steelpoort	-24.4965; 30.399	D	High	D	D	This site is located on the lower reaches of the Steelpoort River towards the confluence of the Olifants River (Great Escarpment	 Large upstream impoundment (De Hoop Dam) – impact on flow

EWR site	Quaternary catchment/ Sub-reach	River	Coordinates	PES	EI_ES	REC	TEC	Site Location	
								Mountains Ecoregion)	
OLI_EWR8	B60H-00485	Ohrigstad	-24.5473; 30.73807	с	Moderate	с	С	This site is located in quaternary catchment B60H and is situated on the R532 road to Blyde River Canyon. The site falls within the Blyde Nature Reserve. No gauging weirs are present in the vicinity of the selected site.	 Land use impa Intensive irriga Water quality i
Olifants_EWR14a	B72H-00282	Upper Ga-Selati	-24.0012; 30.6823	С	Moderate	С	С	This site is located in Ermelo Ranch, on the middle Selati River (Lowveld Ecoregion)	Land use impa
Letaba Catchment				-			_		
Letaba-EWR7	B83D-00250	Letaba	-23.8268; 31.5906	C/D	High	с	С	The site is located on the Letaba River in the Kruger National Park just upstream of Letaba Rest Camp and the Engelhard Dam/weir.	 Very little upst No invasive ve Limited impact Some tramplin drought period Some poor wa the KNP
Letaba-EWR2	B81D-00271	Letsitele	-23.8932; 30.3576	D	High	D	D	The site is located on the Letsitele River just downstream gauging weir B8H010 and upstream the Letaba River confluence.	 Large scale to Poor infrastruc Wood harvesti Over grazing a Removal of rip Cultivation and Water abstract Forestry in the Poor sanitation Alien invasive
Letaba-EWR1	B81B-00264	Great Letaba	-23.9178; 30.0507	C/D	High	с	С	The site is located on the Great Letaba River between Ebenezer and Tzaneen Dams in the upper foothills geozone.	 Extensive fore Developments Limited sewers Alien invasive Limited erosio Upstream info Upstream imp
Letaba_BRO1	B81A-00242	Broederstroom	-23.8011; 29.9772	B/C	High	B/C	B/C	The site is located in the upper catchment on the Broederstroom just upstream of Dap Naude Dam.	 Extensive fore Deposition (up Invasive plants
Shingwidzi catchment	Γ	1		1	1	1	1	The state is beneficial as $A = 1$	
Shingwedzi_SHI1	B90H-00117	Shingwidzi	-23.1849; 31.5251	с	High	B/C	B/C	Shingwedzi River before it enters Mozambique downstream of the Kanniedood Dam in the Kruger National Park.	 Abstraction ou Water quality p Erosion and si

Table 2: Locality and Biological moitoring site information

Biological site	Quaternary catchment	River	Coordinates	Sub-reach	Site Location	
Olifants Catchment						
Olifants_STE1	B11E	Steenkoolspruit	-26,0824.61; 29,1608.27	B11E-01297	The site is located on the lower Steenkoolspruit upstream of the confluence with the OLifants River	 Flow velocity very I Azolla (red fern) ab High sediment High algae.
Olifants_STE2	B11C	Steenkoolspruit	-26,1928.78; 29,1827.39	B11C-01449	The site is located on the upper Steenkoolspruit upstream of the confluence with the Dwars-in-die-Wegspruit	 Siltation Organic pollution Erosion Trampling

Surrounding Impacts
acts ation impacts
acts
ream impacts getation observed ts from flow modifications ng by mega herbivores – increased erosion during the d ater quality related to anthropogenic impacts from outside
wn developments and informal settlements cture planning ing and trampling parian vegetation
d some commercial farming tion e upper catchments n and sewerage treatment
plants – aquatic and terrestrial
stry i into the riparian zone age into river – poor infrastructure vegetation in the riparian zone n rmal settlements oundments (Dap Naude, Ebenezer)
stry ostream forestry) s and fish
itside KNP and for rest camp/staff village pollution from outside Kruger National Park iltation – due to trampling

Surrounding Impacts

low. bundant.

Biological site	Quaternary catchment	River	Coordinates	Sub-reach	Site Location	s
Olifants_DWA2	B11D	Dwars-in-die-wegspruit	-26,2040.27; 29,1244.90	B11D-01467	The site is located on the Dwars-in-die-Wegspruit, upstream from the confluence with the Steenkoolspruit	 Low flows Siltation Organic pollution Erosion impacts
Olifants_STE3	B11D	Steenkoolspruit	-26,1608.94; 29,1417.73	B11D-01366	The site is located on the Steenkoolspruit downstream of the confluence with the Dwars-in-die-Wegspruit	 Low flows Sewage pollution Over grazing Trampling Alien vegetation
Olifants_OLI1	B11L	Olifants	-25,3550.23; 29,1227.42	B11L-01024	The site is well located on the Olifants River below the confluences of the Klein Olifants and Klipspruit but above the Wilge confluence.	 Water quality impacts Poorly treated sewage Alien vegetation Sedimentation
Olifants_K-OLI1	B12B	Klein Olifants	-25,5305.62; 29,3758.39	B12B-01192	The site is located on the Klein-Olifants River upstream of Middleburg Dam.	 Erosion Poorly treated sewage Siltation Trampling
Olifants_K-OLI2	B12C	Klein Olifants	-25,4903.25; 29,3525.98	B12C-01153	The site is located on the Klein-Olifants River upstream of Middleburg Dam.	 Erosion Water quality impacts Poorly treated sewage
OLIFANTS_BRO	B20D	Bronkhorstspruit	-25,5304.5; 28,4325.7	B20D-01146	The site is located on the Bronkhortspruit River.	 Moderate flows as a re Floating debris Sedimentation and org Lots of algae and diato Upstream Bronkhorsts High algae
Olifants_ELA2	B31A	Elands	-25,3430.04; 28,3435.79	B31A-00963	The site is located on the upper Elands River in the headwater of the catchment.	 Flow impacts Silt Sewage effluent Alien vegetation
Olifants_GRO1	B41A	Grootspruit	-25.58372, 29.87910	B41A-01025	The site is located on the Grootspruit just before the confluence with the Steelpoort and the Langspruit.	 Agricultural activities Cultivation Grazing Incised banks
OLI-LAN1	B41A	Langspruit	-25.592544, 29.898643	B41A-01047	The site is located on the Langspruit upstream with the confluence of the Grootspruit where it forms with Steelpoort River.	 Historical quarry upstree Cultivation Water abstraction Grazing Agricultural activities Collapsed banks and e
Olifants_MAS1	B41C	Masala	-25,0827.6; 29,5459.4	B41C-00766	The site is located on the Masala River adjacent to a private lodge upstream of De Hoop Dam and the confluence of the Steelpoort River.	 Very low flows Mining activities Agricultural activities Dry land cultivation Informal settlements Stream diversions and
Olifants_KLI1	B41F	Klip	-24,5904.58; 29,5919.70	B41F-00699	The site is located in the lower Klip River prior to its confluence into the De Hoop Dam.	 Very low flows Silt higher than expect Some algae Detritus According to local inforthe mines during constitutions
Olifants_STEP1	B41H	Steelpoort	-24,894400; 30.017083	B41H-00610	The site is located on the main stem of the Steelpoort River downstream of the De Hoop Dam.	Very low flowsSiltAgricultural activities

Surrounding Impacts
xts
age effluent
age effluent
ts
a result of release from the dam
organics observed.
iatoms present (long stringy algae).
stspruit dam
S
stream
S
a erosion
S
S
and modifications
ected
nformation the DWS noted severe pollution from
Instruction of De Hoop.
S

Biological site	Quaternary catchment	River	Coordinates	Sub-reach	Site Location	
						 Impacts from grazing Wood harvesting (wo Mining activities Exposed soils
Oliants_DWA1	B41H	Dwars	-245038.33; 30,0530.24	B41H-00640	The site is located in the Dwars River, upstream of the confluence of the Steelpoort River.	 Very low flow Substrate has fine sil Detritus build up note Upstream flow modifi Abstraction Weirs present
Oliants_G-DWA1	B41G	Groot Dwars	-25,0539.99; 30,0720.72	B41G-00721	The site is located in the Groot Dwars River upstream of the Der Brochen Dam.	 Extensive mining acti Grazing and cultivation
Olifants_MOH1	B71C	Mohlapitse	-24,0613.01; 30.0706.47	B71C-00292	The site is located on the Mahlapitse River downstream of the Wolkberg Wilderness Trail and Lekgalameetse Nature Reserve.	 Low flow High silt present follo Wood harvesting Cattle grazing
Olifants_MOH2	B71B	Mohlapitse	-24,1413.08; 30,0435.75	B71B-00335	The site is located on the Mohlapiste upstream from the confluence of the Olifants River (Site S10).	 Low flow observed. Invasive vegetation w High sedimentation. Water had a blue soa Agricultural activities Cattle grazing Cultivation
Olifants_MOT1	B71E	Motse	-24,1852.46; 30,1023.34	B71E-00429	The site is located on the Motse River just upstream with the confluence of the Olifants River.	 Very low flows, mostl Water discoloured green Informal settlement Grazing and tramplin Cultivation Wood harvesting
Olifants_TIM1	B73G	Timbavati	-24.119665, 31.632990	B73G-00339	The site is located on the Timbavati River within a protected reserve.	 Flow impacts Water quality impacts
Olifants_OLI2	B73J	Olifants	-23.98734, 31.828179	B73J-00304	The site is located downstream of the Olifants and Letaba confluence and is the most downstream site of the greater catchment.	 Site is located within Located within the go catchment Most downstream site
Letaba Catchment	1					
Letaba_BRO2	B81A	Broederstroom	-23.9328, 29.94485	B81A-00270	The site is located in the Broederstroom, upstream of the Ebenezer Dam.	Low flowsPlantationsExposed soils
Letaba_POL1	B81B	Politsi	-23.7923, 30.11532	B81B-00240	The site is located in the Politsi River, upstream of the Tzaneen Dam.	 Low flows Silt Agricultural activities Informal settlements Wood harvesting (plate) Some sewerage from Exposed soils
Letaba_G-LET4	B81C	Groot Letaba	-23.8395, 30.21627	B81F-00231	The site is located in the Groot Letaba just downstream of the town of Tzaneen, Tzaneen Dam and Yamorna Weir.	 Flow regime modified Abstraction, weirs an Fragmented river Agricultural activities Informal settlements Sewerage and chemi
Letaba_G-LET3	B81E	Groot Letaba	-23.735, 30.50999	B81F-00231	The site is located in the Groot Letaba, upstream from site Letaba_G-LET2	 Low flows - controlled Fragmentation of rive Abstractions Agricultural activities Impacts from grazing Wood harvesting Erosion

Surrounding Impacts

ng wood crafters)

silt. oted - linked to canopy cover. difications

activities ation activities

llowing rain

within the riparian zone.

soapy feel and look to it. es

ostly ephemeral green with some silt present.

ling

acts

nin a protected area. gorge downstream of the Olifants and Letaba

site of the greater catchment

es its plantations) om informal areas

fied from Lake Tzaneen - low flows and dams

es nts emical pollution river - weirs and dams

ing

Biological site	Quaternary catchment	River	Coordinates	Sub-reach	Site Location	
						Exposed soils
Letaba_G-LET2	B81F	Groot Letaba	-23.6596, 30.63574	B82G-00135	The site is located in the Groot Letaba, upstream from the Hans Merensky Nature Reserve.	 Low flows Fragmentation – we Agricultural activities Rural activities Wood harvesting Removal of riparian Erosion
Letaba_G-LET1	B81J	Groot Letaba	-23.652, 31.13173	B81J-00219	The site is located in the Groot Letaba upstream before the confluence with the Klien Letaba (becoming Letaba River).	 Very low flows Silt Agricultural activities Impacts from grazin Wood harvesting in Fragmentation due Exposed soils Abstraction Return/runoff flows
Letaba_K-LET2	B82G	Klein Letaba	-23.281, 30.54316	B82G-00135	The site is located in the Klein Letaba directly downstream of the weir located near Hlaneki.	 Very low flows Silt Agricultural activities Impacts from grazin Wood harvesting (w Weir Abstraction Exposed soils, tram
Letaba_NSA1	B82H	Nsama	-23.3488, 30.90899	B82H-00157	The site is located in the Nsama River, downstream of the Hudson Ntsanwisi Dam and before the confluence with the Klein Letaba.	 No flow during surve Silt high Agricultural activities Impacts from grazin Wood harvesting Exposed soils Trampling
Letaba_K-LET1	B82J	Klein Letaba	-23.6459, 31.14202	B82J-00201	The site is located in the lower section of the Klein Letaba River before the confluence with the Groot Letaba (becoming Letaba River).	 Abstraction Exposed soils Poor land-use pract Poor infrastructure Erosion and siltatior
Letaba_LET1	B83A	Letaba	-23.6505, 31.14846	B83A-00220	The site is located in the Letaba River, just below the confluence of the Groot and Klein Letaba tributaries.	 Siltation limited – ou Low flows related to Fragmentation – nu Exposed soils due to
Letaba_TSE1	B83C	Tsende	-23.5361, 31.41703	B83B-00161	The site is located in the Tsende River, downstream of Pioneer Dam (Mopani Rest Camp) and upstream of the Mooiplaas picnic area (Tsendze Rustic Camp Site).	Very low flowsImpoundment (Pion
Letaba_LET2	B83E	Letaba	-23.9422, 31.73159	B83E-00265	The site is located in the lower section of the Letaba River before it joins the Olifants River.	 Very low flows Some siltation due t Abstraction outside
Shingwedzi catchment	1				1	
Shingwedzi_SHIS1	B90D	Shisha	-22.8689, 31.22339	B90D-00067	The site is located in the Shisha River which is predominantly within the Kruger National Park.	 No flow – pools only Some silt Site seasonal – part
Shingwedzi_MPH2	B90D	Mphongolo	-23.0238, 31.33415	B90D-00112	The site is located in the Mphongolo River, downstream of the confluence with the Phugwane and Shisha Rivers.	 Very low flows Trampling Some bank destabil
Shingwedzi_MPH1	B90B	Mphongolo	-22.8807, 30.96024	B90B-00082	The site is located in the Mphogolo River where the river enters the Kruger National Park.	 No flow Silt Agricultural activities Impacts from grazin Wood harvesting (u) Exposed soils (upst)

Surrounding Impacts eirs and dams es vegetation es ng n the riparian zone to dams and weirs - agricultural and sewerage es ng vood crafters) npling and erosion 'ey s ng tices utside influence o excessive abstraction merous dams and weirs to trampling – drought related neer dam) upstream to trampling in park – drought related park – dams and weirs t of large, flat catchment ilisation es (upstream) ng(upstream) ipstream) tream)

Biological site	Quaternary catchment	River	Coordinates	Sub-reach	Site Location	Surrounding Impacts
						Sewerage (upstream)
Shingwedzi_PHU1	B90C	Phugwane	-22.9862, 30.92536	B90C-00106	The site is located in the Phugwane River where the river enters the Kruger National Park.	 No flow during survey Silt Agricultural activities Impacts from grazing Wood harvesting Sewerage Exposed soils
Shingwedzi_SHI2	B90F	Shingwedzi	-23.1417, 30.93512	B90F-00114	The site is located in the Shingwedzi River as it enters the Kruger National Park.	 Abstraction Silt Agricultural activities Impacts from grazing Wood harvesting (wood crafters) Mining activities (old discarded mines) Exposed soils Sewerage
Shingwedzi_SHI3	B90G	Shingwedzi	-23.1724, 31.30491	B90G-00130	The site is located in the Shingwedzi River downstream of the geological feature exposed by the river (sandstone slab) know as Red Rocks. This site is above the confluence of the Mphongolo (including: Shisha and Phugwane).	Very low flows Some pollution from outside KNP

Table 3: Most impacted sites in the system

Most impacted sites		Poor		Serious	
River	Site name	Aquatic biota	Flow	quality issues	Reason
Olifants	Olifants_EWR1	V	V	V	 Extensive coal mining Acid mine drainage Urbanisation Return flows from Wastewater treatment works (WWTW) Limited releases from Witbank Dam
Wilge	Olifants_EWR4	V	V	V	 Increased coal mining Urbanisation Increased return flows from WWTW
Klein- Olifants	Olifants_EWR3	\checkmark		V	 Extensive mining Agriculture Limited releases from Middelburg Dam Untreated/poorly treated sewerage
Middle reaches of the Olifants from Flag Boshielo Dam to the border of KNP	Olifants_EW7	V	V	V	 Limited releases from Flag Boshielo Dam, De Hoop Dam and Blyderivierpoort Dam Extensive agriculture Erosion due to high cattle trampling and over grazing.
Lower Blyde River	Olifants_EWR12	V	V	\checkmark	 Extensive agricultural Limited releases from Blyderivierpoort Dam
Olifants River in KNP	Olifants_EWR16	V	V		 PES D instead of a C Can't provide the flows to support aquatic biota

Most impacted sites		Poor		Serious			
River	Site name	Aquatic Flow biota		quality issues	Reason		
Groot Letaba	Letaba-EWR1	\checkmark	\checkmark	\checkmark	 Limited releases from upstream large dams Extensive forestry Urbanisation Alien invasive vegetation in the riparian zone Limited releases from Dap Naude, Ebenezer Dams 		
Letaba River in KNP	Letaba-EWR7	V	\checkmark	V	 Limited releases from upstream large dams Nutrient enrichment Extensive agriculture outside the KNP. 		
Shingwedzi River	SHI1	V	\checkmark	V	 Extensive use outside the KNP impacts the flows at this site Ephemeral system 		

2.2 TARGET ECOLOGICAL WATER REQUIREMENTS

The EWRs for the TEC for all the EWR sites are given in **Table 4**. The EWR specifies the magnitude, duration and timing of specific flows and flow patterns that are considered to be the most important for maintaining the abiotic and biotic components of the TEC. EWRs are provided as the long-term mean percentages of the natural MAR (nMAR). The EWR flows constituted between 10 and 50 % of the nMAR for the rivers in the Olifants/Letaba System.

The quantification of the EWRs used the Desktop Reserve Model (DRM) (SPATSIM, version 2.12) and the results of the hydraulic modelling to calculate and evaluate the Ecological Water Requirements (quantity) for the REC and the final TEC at the EWR sites.

These EWR flow data were converted to hydraulic conditions at the rapid III EWR sites (i.e. depths and flow velocities at discharges measured in m³/s) using a hydraulic model and evaluated by the ecologists. Where the modelled requirements were not adequate to provide the envisaged protection, the DRM was adjusted accordingly.

The following approaches were used:

• Verification of the drought and base flows (maintenance flows) using the DRM and hydraulic cross-sections;

- Specification of freshets and annual floods at the new rapid sites;
- Assessment of the freshets and annual floods specified during the previous preliminary Reserve studies, taking the release capacities of dams (where available) into consideration. These freshets were adjusted where required when higher than the release capacities of the dams;
- Assessment of the equal drought and base flows as specified at specific EWR sites for the Olifants catchment during the 2001 comprehensive study. Adjustments were made to these flow requirements, using the hydraulic cross-sections and habitat availability during drought periods.
- The quantified EWRs (RECs) were assessed, to evaluate the ecological responses to selected flow scenarios.
- Evaluation of ecological consequences and operational considerations based on the planning scenarios that considered the impact of the different ecological categories on the yield of the dams in the system;
- Adoption of the recommended scenario and defining the ecological specifications and monitoring requirements for maintenance of the Reserve for the rivers in the Olifants, Letaba and Shingwedzi catchments.

These final Ecological Reserve flow requirements for the TECs have been specified in the format of assurance tables and EWR rule curves. These curves specify the frequency of occurrence relationships of the defined maintenance and drought flow requirements for each month of the year. The tables thus specify the percent of time that defined flows should equal or exceed the flow regime required to satisfy the ecological Reserve.

The EWRs for the EWR sites are summarised below in **Table 4** for the Olifants, Letaba and Shingwedzi catchments respectively, as well as the TEC to be attained.

EWR Site	River	Quaternary catchment	NMAR (Mm³/a)	TEC	Total EWR as %NMAR	Maintenance Low flows as %NMAR	Drought Low flows as %NMAR	Freshets as %NMAR [*]
Olifants_ELA1	Upper Elands	B31C	31.08	С	20.87	10.61	4.93	10.26
Olifants_EWR1	Olifants	B11J	184.54	D	17.8	11.51	4.17	6.29
Olifants_EWR3	Klein Olifants	B12E	81.54	C/D	19.8	9.99	5.08	9.81
Olifants_EWR4	Lower Wilge	B20J	175.59	В	36.28	21.59	6.28	14.69
Olifants_WIL1	Upper Wilge	B20F	44.76	С	15.11	7.43	4.80	7.68
Olifants_EWR2	Olifants	B32A	500.63	B/C	29.83	23.11	6.10	6.72
OLI_EWR3	Kranspoortspruit	B32A	13.258	В	30.26	16.85	1.80	13.41
Olifants_SEL1	Selons	B32C	33.11	С	21.86	12.47	7.11	9.39
Olifants_EWR6	Lower Elands	B31G	60.32	D	10.48	7.30	3.29	3.18
Olifants_EWR5	Olifants	B32D	571.13	С	12.51	10.31	2.76	2.20
Olifants_EWR9	Steelpoort	B41H	137.5	C/D	23.33	15.16	6.66	8.18
Olifants_EWR10	Steelpoort	B41K	342.75	D	12.69	8.80	8.08	3.89
Olifants_EWR7	Olifants	B51G	736.94	D	9.89	8.78	1.72	1.12
Olifants_EWR8	Olifants	B71D	813.04	C/D	15.19	11.78	6.26	3.41
Olifants_SPE1	Spekboom	B42H	148.19	С	23.16	12.61	6.31	10.55
Olifants_EWR12	Lower Blyde	B60J	383.5	В	31.14	26.17	10.68	4.97
Olifants_EWR11	Olifants	B71J	1 321.92	C/D	12.81	9.86	6.26	2.94
Olifants_EWR13	Olifants	B72D	1762.1	С	23.23	18.14	7.99	5.09
Olifants_EWR14a	Upper Ga-Selati	B72H	52.2	С	27.53	20.48	0.00	7.05
Olifants_EWR14b	Lower Ga-Selati	B72K	72.74	D	19.45	12.65	0.00	6.81
Olifants_EWR16	Olifants	B73H	1 918.3	С	21.06	17.72	10.01	3.34

Table 4: Ecological Water Requirements and Target Ecological Category (TEC) for the EWR sites

EWR Site	River	Quaternary catchment	NMAR (Mm³/a)	TEC	Total EWR as %NMAR	Maintenance Low flows as %NMAR	Drought Low flows as %NMAR	Freshets as %NMAR [*]
Olifants_BLY1	Upper Blyde	B60B	164.45	В	46.08	35.96	12.16	10.12
SPK-EWR1	Spookspruit	B11H	9.322	С	30.12	14.82	7.87	15.29
DWA_EWR1	Dwars	B41H	26.1	B/C	31.24	23.40	8.78	7.84
OLI_EWR8	Ohrigstad	B60H	67.79	С	17.41	16.36	5.66	1.05
Letaba_EWR7	Letaba	B83D	646.28	С	17.34	13.88	4.91	3.46
Letaba_EWR2	Letsitele River	B81D	116.55	D	17.59	13.09	7.89	4.49
Letaba_EWR1	Great Letaba	B81B	99.85	С	24.76	17.58	9.56	7.18
Letaba_BRO1	Broederstroom	B81A	6.68	B/C	49.22	39.61	14.58	9.60
Shingwedzi_SHI1	Shingwedzi	B90H	86.42	B/C	22.50	6.41	0.00	16.09

* For release purposes, the freshets as specified in the EWR report should be used and not the summary as a % of the NMAR

3 ECOLOGICAL SPECIFICATIONS: DESCRIPTORS USED TO SPECIFY ECOLOGICAL CONDITION

Ecological specifications (Ecospecs) defined for drivers and responses serve as the ecological objectives that must be met. Specification of the ecological attributes and the driver components would provide an indication of the attainment of the TEC. The monitoring of these specifications and the drivers would determine how a resource is changing over time and whether the Reserve is being met. If not met, management intervention may be required to order to attain the desired ecological category. A brief description of each component

In Section 4, Ecospecs are provided for the following components (drivers and responses):

- Flow;
- Water Quality;
- Macroinvertebrates;
- Fish; and
- Habitat Integrity.

A brief description of the nature and content of the ecological specifications of these driver and response components is provided below.

3.1 FLOW

The flow ecological specifications are encompassed in the EWRs summarised in Section 2.2. The following descriptors of the flow characteristics are used to describe the EWRs in terms of ecological specifications:

- Total Mean Annual Maintenance and drought low flow volumes
- Monthly Mean Maintenance and drought low flows
- Monthly exceedance curves for the low flows (excluding freshets and floods)
- Monthly exceedance curves for the complete flow regime
- Duration, magnitude (in daily average peak), volume and timing of intra-annual floods.

The Reserve flow specifications (requirements) for the EWR sites in the study area is provided in Section 4.1 of this report. These have been determined based on the natural hydrology, the hydraulic characteristics of the site and the ecological specialist's interpretation of the habitat requirements of the biota. These have been defined as a set of Reserve assurance rules (frequency of occurrence tables of flow rates or volumes for different months of the year).

3.2 WATER QUALITY

The water quality Ecospecs of the Ecological Reserve include a range of selected variables that

provide baseline data that would provide an interpretation of biological responses and whether water quality as a driver is a problem. Monitoring and assessment of the physico-chemical data provides an understanding of the water quality impacts in the system, and an indication of whether the water quality contributes to the ecological category of the site. Water Quality Ecospecs are presented in Section 4.2 of this report.

The following water quality variables are included in the water quality Ecospecs either quantitatively or qualitatively:

- Physico-chemical: pH, Water temperature (°C), Dissolved oxygen (DO) in mg/L; Electrical conductivity (mS/m), Turbidity (NTU)
- Nutrients: Total Inorganic Nitrogen, ammonia, phosphate
- Major Ions: Calcium (Ca), magnesium (Mg), sodium (Na), sulphate (SO₄) and chloride (Cl)
- Chlorophyll a (Chl a) as periphyton algae (mg/m²); Chlorophyll a as phytoplankton algae (µg/L)
- Toxicants: Metal ions (such as Al, Fe, Mn), pesticides, in-stream toxicity, fluoride (F).

3.3 MACROINVERTEBRATES

The descriptors for the macroinvertebrates were derived from DWAF (2008, 2007b) and Kleyhans and Louw (2006), and are based on a combination of target SASS5 scores and site-specific requirements for the presence of individual taxa. This approach was chosen because of the practicality of using existing biomonitoring practices, as well as the greater precision afforded by focusing on taxa with fairly well known habitat requirements.

The descriptors of the macroinverbrates are given below which is based on baseline and reference data:

- South African Scoring System Version 5 (SASS5) Scores;
- Average score per taxon (ASPT); and
- Biotopes/habitats.

3.4 FISH

The fish communities will be affected in several ways by flow regulation and water quality (drivers). These include both beneficial and adverse effects. Some species may increase in abundance in the rivers whereas others may be lost from a specific reach. In particular, flow plays a critical role in mediating relative abundances of native and non-native species, with low, constant flows benefiting invasive alien species. Water quality, as a driver, would impact on the health of the ecosystem, influencing the habitat and causing changes to the fish communities.

Baseline and reference data has been used as criteria to determine the species for the descriptors of the fish ecospecs.

3.5 HABITAT INTEGRITY

Fish communities, invertebrate and riparian assemblage will respond to habitat changes related to changes in water level and water quality. Conditions related to habitat integrity have been specified based on baseline data.

4 ECOLOGICAL SPECIFICATIONS AND MONITORING

4.1 Flow

The EWR requirements for all the EWR sites are included in the tables that follow below. A TEC is specified at all the key sites at which ecological consequences have been evaluated, however this is still under review. The associated rule and tab tables per site are included as Appendix A.

Table 5: EWR Requirements for Upper Elands: Olifants_ELA1

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B31C
River	Upper Elands
EWR Site Co-ordinates	S25.3031, E28.4631
Recommended Ecological Category	С
NMAR at EWR site	31.075
Total EWR	6.485 (20.87 %MAR)
Maintenance Low flows	3.296 (10.61 %MAR)
Drought Low flows	1.533 (4.93 %MAR)
Maintenance High flows	3.189 (10.26 %MAR)

Table 6: EWR Requirements for Lower Wilge: Olifants_EWR4

EWR Table: B TEC (flows in million m³ per annum)

Quaternary Catchment	B20J
River	Lower Wilge
EWR Site Co-ordinates	S25.6196, E28.9991
Target Ecological Category	В
NMAR at EWR site	175.58
Total EWR	63.698 (36.28%MAR)
Maintenance Low flows	37.907 (21.59%MAR)
Drought Low flows	11.029 (6.28%MAR)
Maintenance High flows	25.790 (14.69 %MAR)
Table 7: EWR Requirements for the Upper Wilge: Olifants_WIL1

EWR Table: C REC (flows in million m³ per annum)

Quaternary Catchment	B20F
River	Upper Wilge
EWR Site Co-ordinates	S25.8439, E28.8719
Recommended Ecological Category	С
NMAR at EWR site	44.755
Total EWR	6.763 (15.11 %MAR)
Maintenance Low flows	3.326 (7.43 %MAR)
Drought Low flows	2.151 (4.80 %MAR)
Maintenance High flows	3.437 (7.68 %MAR)

Table 8: EWR Requirements for the Olifants: Olifants_EWR1

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B11J
River	Olifants
EWR Site Co-ordinates	S25.7592, E29.3096
Target Ecological Category	D
NMAR at EWR site	184.53
Total EWR	32.845 (17.80 %MAR)
Maintenance Low flows	21.233 (11.51 %MAR)
Drought Low flows	7.704 (4.17 %MAR)
Maintenance High flows	11.612 (6.29 %MAR)

Table 9: EWR Requirements for the Klein Olifants: Olifants_EWR3

EWR Table: C/D TEC (flows in million m³ per annum)

Quaternary Catchment	B12E
River	Klein Olifants
EWR Site Co-ordinates	S25.6736, E29.342
Target Ecological Category	C/D
NMAR at EWR site	81.539

Quaternary Catchment	B12E
Total EWR	16.146 (19.80 %MAR)
Maintenance Low flows	8.145 (9.99 %MAR)
Drought Low flows	4.143 (5.08 %MAR)
Maintenance High flows	8.001 (9.81 %MAR)

Table 10: EWR Requirements for the Olifants: Olifants_EWR2

EWR Table: B/C TEC (flows in million m³ per annum)

Quaternary Catchment	B32A
River	Olifants
EWR Site Co-ordinates	S25.4963, E29.2546
Target Ecological Category	B/C
NMAR at EWR site	500.63
Total EWR	149.364 (29.83 %MAR)
Maintenance Low flows	115.720 (23.11 %MAR)
Drought Low flows	30.564 (6.10 %MAR)
Maintenance High flows	33.644 (6.72 %MAR)

Table 11: EWR Requirements for the Kranspoortspruit: OLI_EWR8

EWR Table: B REC (flows in million m³ per annum)

Quaternary Catchment	B32A
River	Kranspoortspruit
EWR Site Co-ordinates	S25.4377, E29.4756
Recommended Ecological Category	В
NMAR at EWR site	13.858
Total EWR	4.194 (30.26 %MAR)
Maintenance Low flows	2.335 (16.85 %MAR)
Drought Low flows	0.250 (1.80 %MAR)
Maintenance High flows	1.859 (13.41 %MAR)

Table 12: EWR Requirements for the Selons River: Olifants_SEL1

EWR Table: C REC (flows in million m³ per annum)

Quaternary Catchment	B32C
River	Selons
EWR Site Co-ordinates	S25.3799, E29.4356
Recommended Ecological Category	С
NMAR at EWR site	33.109
Total EWR	7.237 (21.86 %MAR)
Maintenance Low flows	4.130 (12.47 %MAR)
Drought Low flows	2.356 (7.11 %MAR)
Maintenance High flows	3.107 (9.39 %MAR)

Table 13: EWR Requirements for the Olifants: Olifants_EWR 8

EWR Table: C/D TEC (flows in million m ³ per annum)
--

Quaternary Catchment	B71D
River	Olifants
EWR Site Co-ordinates	S24.2399, E30.0825
Target Ecological Category	C/D
NMAR at EWR site	813.17
Total EWR	123.52 (15.19 %MAR)
Maintenance Low flows	95.791 (11.78 %MAR)
Drought Low flows	50.939 (6.26 %MAR)
Maintenance High flows	27.734 (3.41 %MAR)

Table 14: EWR Requirements for the Lower Spekboom River: Olifants_SPE1

EWR Table: C	TEC (flows	in million	m ³ per	annum)

Quaternary Catchment	B42H
River	Lower Spekboom
EWR Site Co-ordinates	S24.6942, E30.3613
Target Ecological Category	С

NMAR at EWR site	148.19
Total EWR	34.316 (23.16 %MAR)
Maintenance Low flows	18.687 (12.61 %MAR)
Drought Low flows	9.346 (6.31 %MAR)
Maintenance High flows	15.630 (10.55 %MAR)

Table 15: EWR Requirements for the Upper Blyde: Olifants_BLY1

EWR Table: B TEC (flows	in million m ³	per annum)
-------------------------	---------------------------	------------

Quaternary Catchment	B60B
River	Upper Blyde
EWR Site Co-ordinates	S24.7344, E30.7783
Target Ecological Category	В
NMAR at EWR site	164.45
Total EWR	75.777 (46.08 %MAR)
Maintenance Low flows	59.129 (35.96 %MAR)
Drought Low flows	20.003 (12.16 %MAR)
Maintenance High flows	16.648 (10.12 %MAR)

Table 16: EWR Requirements for the Olifants: Olifants_EWR11

EWR Table: C/D TEC (flows in million m³ per annum)

Quaternary Catchment	B71J
River	Olifants
EWR Site Co-ordinates	S24.3076, E30.7857
Target Ecological Category	C/D
NMAR at EWR site	1 321.92
Total EWR	169.27 (12.81 %MAR)
Maintenance Low flows	130.388 (9.86 %MAR)
Drought Low flows	82.805 (6.26 %MAR)
Maintenance High flows	38.884 (2.94 %MAR)

Table 17: EWR Requirements for the Lower Blyde: Olifants_EWR12

EWR Table: B TEC (flows in million m³ per annum)

Quaternary Catchment	B60J
River	Lower Blyde
EWR Site Co-ordinates	S24.4075, E30.8274
Target Ecological Category	В
NMAR at EWR site	383.27
Total EWR	119.394 (31.14 %MAR)
Maintenance Low flows	100.343 (26.17 %MAR)
Drought Low flows	40.967 (10.68 %MAR)
Maintenance High flows	19.051 (4.97 %MAR)

Table 18: EWR Requirements for the Olifants: Olifants_EWR13

EWR Table: C TEC (flows in million m ³ pe	r annum)
--	----------

Quaternary Catchment	B72D
River	Olifants
EWR Site Co-ordinates	S24.1284, E31.0146
Recommended Ecological Category	С
NMAR at EWR site	1 762.1
Total EWR	409.396 (23.23 %MAR)
Maintenance Low flows	319.713 (18.14 %MAR)
Drought Low flows	140.811 (7.99 %MAR)
Maintenance High flows	89.683 (5.09 %MAR)

Table 19: EWR Requirements for the Olifants: Olifants_EWR 16

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B73H
River	Olifants
EWR Site Co-ordinates	S24.0494, E31.7318
Target Ecological Category	С
NMAR at EWR site	1 918.3
Total EWR	403.958 (21.06 %MAR)
Maintenance Low flows	339.962 (17.72 %MAR)

Quaternary Catchment	B73H
Drought Low flows	192.106 (10.01 %MAR)
Maintenance High flows	63.996 (3.34 %MAR)

Table 20: EWR Requirements for the Olifants: Olifants_EWR5

	EWR	Table:	С	TEC	(flows	in	million	m ³	per	annum)
--	-----	--------	---	-----	--------	----	---------	----------------	-----	-------	---

Quaternary Catchment	B32D
River	Olifants
EWR Site Co-ordinates	S25.3040, E29.4220
Target Ecological Category	С
NMAR at EWR site	571.13
Total EWR	71.449 (12.51 %MAR)
Maintenance Low flows	58.886 (10.31 %MAR)
Drought Low flows	15.768 (2.76 %MAR)
Maintenance High flows	12.563 (2.20 %MAR)

Table 21: EWR Requirements for the Lower Elands: Olifants_EWR6

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B31G
River	Lower Elands
EWR Site Co-ordinates	S25.1160, E28.9565
Target Ecological Category	D
NMAR at EWR site	60.32
Total EWR	6.319 (10.48 %MAR)
Maintenance Low flows	4.401 (7.30 %MAR)
Drought Low flows	1.987 (3.29 %MAR)
Maintenance High flows	1.918 (3.18 %MAR)

 Table 22: EWR Requirements for the Olifants:
 Olifants_EWR7

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B51G
River	Olifants
EWR Site Co-ordinates	S24.5289, E29.5464
Target Ecological Category	D
NMAR at EWR site	736.942
Total EWR	72.915 (9.89 %MAR)
Maintenance Low flows	64.673 (8.78 %MAR)
Drought Low flows	12.646 (1.72 %MAR)
Maintenance High flows	8.243 (1.12 %MAR)

Table 23: EWR Requirements for the Steelpoort: Olifants_EWR9

EWR Table: C/D TEC (flows in million m ³ per annum)	

Quaternary Catchment	B41H	
River	Steelpoort	
EWR Site Co-ordinates	S24.7750, E30.1650	
Target Ecological Category	C/D	
NMAR at EWR site	137.4	
Total EWR	32.079 (23.33 %MAR)	
Maintenance Low flows	20.838 (15.16 %MAR)	
Drought Low flows	9.153 (6.66 %MAR)	
Maintenance High flows	11.241 (8.18 %MAR)	

Table 24: EWR Requirements for the Steelpoort: Olifants_EWR10

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B41K	
River	Steelpoort	
EWR Site Co-ordinates	S24.4965, E30.399	
Target Ecological Category	D	
NMAR at EWR site	342.7	
Total EWR	43.503 (12.69 %MAR)	
Maintenance Low flows	30.168 (8.80 %MAR)	

Drought Low flows	27.696 (8.08 %MAR)
Maintenance High flows	13.336 (3.89 %MAR)

Table 25: EWR Requirements for the Upper Ga-Selati: Olifants_EWR14a

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B42H	
River	Upper Ga-Selati	
EWR Site Co-ordinates	S24.0012; E30.6823	
Target Ecological Category	С	
NMAR at EWR site	52.205	
Total EWR	14.372 (27.53 %MAR)	
Maintenance Low flows	10.692 (20.48 %MAR)	
Drought Low flows	0.000 (0.00 %MAR)	
Maintenance High flows	3.681 (7.05 %MAR)	

Table 26: EWR Requirements for the Lower Ga-Selati: Olifants_EWR14b

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B42K	
River	Lower Ga-Selati	
EWR Site Co-ordinates	S24.0225; E31.146667	
Target Ecological Category	D	
NMAR at EWR site	72.74	
Total EWR	14.15 (19.45 %MAR)	
Maintenance Low flows	9.199 (12.65 %MAR)	
Drought Low flows	0.000 (0.00 %MAR)	
Maintenance High flows	4.951 (6.81 %MAR)	

Table 27: EWR Requirements for the Spookspruit: SPK_EWR1

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B60H
River	Ohrigstad

Quaternary Catchment	B60H	
EWR Site Co-ordinates	S25.8605; E29.4029	
Target Ecological Category	С	
NMAR at EWR site	9.322	
Total EWR	2.808 (30.12 %MAR)	
Maintenance Low flows	1.382 (14.82 %MAR)	
Drought Low flows	0.733 (7.87 %MAR)	
Maintenance High flows	1.426 (15.29 %MAR)	

Table 28: EWR Requirements for the Ohrigstad River: OLI_EWR8

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B60H	
River	Ohrigstad	
EWR Site Co-ordinates	S24.5473, E30.73807	
Target Ecological Category	С	
NMAR at EWR site	67.685	
Total EWR	11.785 (17.41 %MAR)	
Maintenance Low flows	11.071 (16.36 %MAR)	
Drought Low flows	3.833 (5.66 %MAR)	
Maintenance High flows	0.714 (1.05 %MAR)	

Table 29: EWR Requirements for the Dwars River: DWA_EWR1

EWR Table: B/C TEC (flows in million m³ per annum)

Quaternary Catchment	B41H	
River	Dwars	
EWR Site Co-ordinates	S24.8358, E30.08345	
Target Ecological Category	B/C	
NMAR at EWR site	26.067	
Total EWR	8.144 (31.24 %MAR)	

Quaternary Catchment	B41H	
Maintenance Low flows	6.099 (23.40 %MAR)	
Drought Low flows	2.289 (8.78 %MAR)	
Maintenance High flows	2.044 (7.84 %MAR)	

Table 30: EWR Requirements for the Letaba: Letaba_EWR7

EWR Table: C TEC (flows	in million	m ³ per annum)
-------------------------	------------	---------------------------

Quaternary Catchment	B83D
River	Letaba
EWR Site Co-ordinates	S23.8268, E31.5906
Target Ecological Category	С
NMAR at EWR site	646.28
Total EWR	112.049 (17.34 %MAR)
Maintenance Low flows	89.672 (13.88 %MAR)
Drought Low flows	31.748 (4.91 %MAR)
Maintenance High flows	22.378 (3.46 %MAR)

Table 31: EWR Requirements for the Letsitele: Letaba_EWR2

EWR Table: D TEC (flows in million m³ per annum)

Quaternary Catchment	B81D
River	Letsitele
EWR Site Co-ordinates	S23.8932, E30.3576
Recommended Ecological Category	D
NMAR at EWR site	116.55
Total EWR	20.497 (17.59 %MAR)
Maintenance Low flows	15.262 (13.09 %MAR)
Drought Low flows	9.200 (7.89 %MAR)
Maintenance High flows	5.236 (4.49 %MAR)

Table 32: EWR Requirements for the Letsitele: Letaba_EWR1

EWR Table: C TEC (flows in million m³ per annum)

Quaternary Catchment	B81B
Qualemary Calchinent	

River	Groot Letaba
EWR Site Co-ordinates	S23. 9178, E30.0507
Target Ecological Category	С
NMAR at EWR site	99.85
Total EWR	24.721 (24.76 %MAR)
Maintenance Low flows	17.553 (17.58 %MAR)
Drought Low flows	9.550 (9.56 %MAR)
Maintenance High flows	7.168 (7.18 %MAR)

Table 33: EWR Requirements for the Broederstroom: Letaba_BRO1

EWR Table: B/C TEC (flows in million m³ per annum)

Quaternary Catchment	B81A
River	Broederstroom
EWR Site Co-ordinates	S23.8011, E29.9772
Recommended Ecological Category	B/C
NMAR at EWR site	6.617
Total EWR	3.257 (49.22 %MAR)
Maintenance Low flows	2.621 (39.61 %MAR)
Drought Low flows	0.965 (14.58 %MAR)
Maintenance High flows	0.636 (9.60 %MAR)

Table 34: EWR Requirements for the Shingwedzi: Shingwedzi_SHI1

EWR	Table:	B/C	TEC	(flows	in	million	m ³	per	annum)
	Tubic.	5,0	120	(110 110				por	annann	,

Quaternary Catchment	В90Н
River	Shingwedzi
EWR Site Co-ordinates	S23.1849, E31.5251
Target Ecological Category	B/C
NMAR at EWR site	86.424
Total EWR	19.449 (22.50 %MAR)
Maintenance Low flows	5.541 (6.41 %MAR)
Drought Low flows	0.000 (0.00 %MAR)
Maintenance High flows	13.909 (16.09 %MAR)

4.2 Water Quality

Water quality ecospecs have been set using PES, the TEC or a Resource quality objective (if available for the site), based on the strictest criteria that applies. In-stream water quality data was also assessed at EWR sites that included a water quality monitoring station in its vicinity.

Upper Elands: Olifants_ELA1

Olifants_ELA1 is located in the upper Elands River above Rust de Winter Dam in the nature reserve. The Elands River in this area flows through the Rust de Winter Dam to confluence with the Olifants some 100 kilometres downstream. Irrigatoin takes place just below the dam for approximately 20kms until it enters the Renosterkop Dam at Vaalbank. The closest water quality site is B3H013 located just below Rust de Winter Dam. Chemical water quality at site B3H013 is good with average total dissolved solids being 130 mg/L. The TEC is C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Upper Elands		EWR : Olifants_ELA1	Nearest WQ site (downstream Rust De Winter Dam) B3H013. No WQ site in vicinity of EWR site. In situ reading obtained during survey		
Water quality metrics		ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data must be \leq 15 mg/L			
	SO ₄	The 95 th percentile of the data must be \leq 30 mg/L			
Major Ions	Na	The 95 th percentile of the data m	nust be ≤ 30 mg/L		
	CI	The 95 th percentile of the data m	nust be ≤.20 mg/L		
	Ca	The 95 th percentile of the data m	nust be ≤ 32 mg/L		
	EC	The 95 th percentile of the data must be ≤ 30 mS/m			
	рН	The 5 th and 95 th percentiles of the data must range from 6.5 – 8.4			
Physical	Temperature	Variation of 2°C or 10% from background average temperature			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.			
Nutrionto	TIN	The 50 th percentile of the data m	nust be ≤ 2.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.025 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data m	nust be ≤ 20 μg/L.		
	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ² .			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.			
Variables	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L			
	Fluoride	The 95 th percentile of the data must be \leq 0.75 mg/L			

Table 35: EWR Site: Upper Elands: Olifants_ELA1 - EcoSpecs relating to Physico-chemical data.

Lower Wilge: Olifants_EWR4

Olifants _EWR4 is located on the Wilge River just below the confluence with the Saalklapspruit and the Osspruit. There are considerable agricultural activities in the area and this point (B2H015) is downstream of several mines and settlements, such as Phola. The chemical water quality at this point shows the impacts from these sources, with elevated TDS, calcium and sulphate. The TEC is B category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit, or the RQO that was applicable for the site.

River: Lower Wilge		EWR : Olifants_EWR4	Downstream B2H015Q01 Wilge River at Zusterstroom				
Water quality metrics		ECOSPEC: TEC, PES and RQO					
	Mg	The 95 th percentile of the data must be ≤ 20 mg/L					
	SO ₄	The 95 th percentile of the data must be ≤ 150 mg/L					
Major Ions	Na	The 95 th percentile of the data must be \leq 20 mg/L					
	CI	The 95 th percentile of the data m	The 95 th percentile of the data must be \leq 30 mg/L				
	Са	The 95 th percentile of the data m	nust be ≤ 70 mg/L				
	EC	The 95 th percentile of the data m	nust be ≤ 55 mS/m				
Physical	pН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8					
	Temperature	Variation of 2°C or 10% from background average temperature					
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L					
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.					
Nutrionto	TIN	The 50 th percentile of the data must be ≤ 0.75 mg/L					
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.025 mg/L					
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L					
	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²					
	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.					
Response variables	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L					
	Aluminium	The 95 th percentile of the data must be \leq 62.5 µg/L					
	Fluoride	The 95 th percentile of the data must be ≤ 0.7 mg/L					
	Manganese	The 95 th percentile of the data must be \leq 99.0 µg/L					

Table 36: EWR Site: Lower Wilge: Olifants_EWR4: EcoSpecs relating to Physico-chemical data.

Upper Wilge: Olifants_WIL1

This site is located on the Wilge River upstream of the confluence with the Bronkhorstspruit. Impacts include agricultural activities and the Kusile Power station. These impacts are evident in the elevated TDS and sulphates recorded at site B2H014.

River: Upper Wilge		EWR : Olifants_WIL1	Downstream B2H014Q01	
Water quality metrics		ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data r	must be ≤ 30 mg/L	
	SO ₄ The 95 th percentile of the data must be \leq 80 mg/L		must be ≤ 80 mg/L	
Major Ions	Na	The 95 th percentile of the data must be \leq 30mg/L		
	CI	The 95 th percentile of the data must be ≤ 20 mg/L		
	Ca	The 95 th percentile of the data r	must be ≤ 32 mg/L	
	EC	The 95 th percentile of the data r	must be ≤ 55 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8		
Physical	Temperature	Variation of 2°C or 10% from background average temperature		
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instreat habitats acceptable.		
Nutrionto	TIN	The 50 th percentile of the data r	must be ≤ 2.0 mg/L	
Nutrients	PO ₄ -P	The 50 th percentile of the data r	must be ≤ 0.058 mg/L	
	Chl-a phytoplankton	The 50 th percentile of the data r	must be ≤ 20 μg/L	
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²		
Response variables	Ammonia	The 95 th percentile of the data r	must be ≤ 43.75 μg/L.	
Atrazine		The 95 th percentile of the data must be \leq 48.75 µg/L		
	Fluoride	The 95 th percentile of the data must be \leq 0.7 mg/L		

Table 37: FWF	R Site: Upper Wilde:	Olitants WII 1 - EcoS	opecs relating to Ph	vsico-chemical data
	Concer oppor ringer		pool folding to fin	joice enemiear aata

Olifants: Olifants_ EWR 1

Olifants_EWR1 is located on the Olifants downstream on the confluence with the main stem Olifants River. The closest water quality monitoring points are B11_188530 on the Olifants and B1H002 on the Spookspruit. The impacts at this point are severe and incude impacts from coal mines, poor functionining domestic wastewater treatment works and urban run-off. The impacts are clearly seen on the elevated TDS and sulphate (95 percentile of 635 mg/L and 195 mg/L respectively) and average orthophosphate levels of 1.1 mg/L in the Olifants; and TDS and sulphate (95 percentile of > 2 000 mg/L and 1 500 mg/L respectively) and calcium levels of 248 mg/L in the Spookspruit. The TEC is D category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Olifants		EWR : Olifants_EWR1	No water quality site in vicinity of EWR site		
Water quality metrics		ECOSPEC: TEC	ECOSPEC: TEC		
	Mg	The 95 th percentile of the data must be \leq 70 mg/L			
SO4The 95th percentile of the data must be $\leq 250 \text{ mg/L}$ Major lonsNaThe 95th percentile of the data must be $\leq 40 \text{ mg/L}$		nust be ≤ 250 mg/L			
		The 95 th percentile of the data r	nust be ≤ 40 mg/L		
	CI	The 95 th percentile of the data r	nust be ≤ 60 mg/L		
	Са	The 95 th percentile of the data r	nust be ≤ 80 mg/L		
	EC	The 95 th percentile of the data r	nust be ≤ 55 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.6 – 9.2			
Physical	Temperature	Variation of 2°C or 10% from background average temperature			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instrear habitats acceptable.			
Nutrionto	Nitrite &Nitrite	The 50 th percentile of the data r	nust be ≤ 3.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data r	nust be ≤ 0.091 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data r	nust be ≤ 20 μg/L		
	Chl-a periphyton	The 50 th percentile of the data must be $\leq 21 \text{ mg/m}^2$			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.			
Atrazine		The 95 th percentile of the data must be \leq 48.75 µg/L			
	Fluoride	The 95 th percentile of the data must be \leq 1 mg/L			

Table 38: EWR Site: Olifants:	Olifants_EWR1 - EcoS	pecs relating to Phy	ysico-chemical data
	_		

Klein Olifants: Olifants_EWR3

Site Olifants_EWR3 is located on the Klein Olifants River downstream of Middelburg and Doringpoort Dams, and downstream of the confluence with the Vaalbankspruit. The Vaalbankspruit flows through the Middelburg industrial area so the site will show impacts from the steel industries located there as well as urban run-off impacts from the town of Middelburg, and will also show impacts from the mines and agricultural activities that occur in the upper catchment of the Klein Olifants. Water quality sites in the vicinity include B12_188401 ands B12_188391, although the data is limited. Elevated levels of TDS (95 percentile: 662 mg/L and 600 mg/L) and sulphate (95 percentile: 266 mg/L and 360mg/L) respectively have been recorded.

The TEC is C/D category. The water quality ecospecs are based on the present state water quality for fluoride and the TEC the remaining parameters.

River: Klein Olifants		EWR : Olifants_EWR3	No water quality site in vicinity of EWR site		
Wate	r quality metrics	ECOSPEC: TEC and PES			
	Mg	The 95 th percentile of the data r	The 95 th percentile of the data must be \leq 50 mg/L		
	SO ₄	The 95 th percentile of the data r	nust be ≤ 150 mg/L		
Major Ions	Na	The 95 th percentile of the data r	nust be ≤ 92.5 mg/L		
	CI	The 95 th percentile of the data r	nust be ≤ 120 mg/L		
	Ca	The 95 th percentile of the data r	nust be ≤ 80 mg/L		
EC		The 95 th percentile of the data must be ≤ 55 mS/m			
	рН	The 5 th and 95 th percentiles of the data must range from 5.6 – 9.2			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be ≥ 6.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instread habitats acceptable.			
Nutrionto	TIN	The 50 th percentile of the data r	nust be ≤ 3.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.091 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data r	nust be ≤ 20 μg/L		
Response	Chl-a periphyton	The 50 th percentile of the data r	nust be ≤ 21 mg/m²		
variables	Ammonia	The 95 th percentile of the data r	nust be ≤ 72.5 μg/L.		
	Fluoride	The 95 th percentile of the data must be \leq 0.7 mg/L			

Table 39:	EWR Site:	Klein Olifants:	Olifants	EWR3 - EcoS	pecs relating	to Ph	vsico-chemica	al data
							J	

Olifants: Olifants_EWR2

EWR site Olifants_EWR2 is located on the Olifants River downstream from the confluence of the Wilge and Klein-Olifants River just upstream of Loskop Dam. There are no water quality sites in this area, with the closest being B2H016 on the Wilge River just upstream of the confluence with the Oilfants. The chemical water quality at this point shows elevated TDS (95 percentile: 400 mg/L) and sulphate (95 percentile 213 mg/L). The water quality at Olifants _EWR2 is expected to be similar.

The TEC is B/C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit or a RQO that was applicable for the site (manganese).

River: Olifants	6	EWR : Olifants_EWR2	No water quality site in vicinity of EWR site	
Wate	r quality metrics	ECOSPEC: TEC, PES and RQC)	
	Mg	The 95 th percentile of the data m	ust be ≤ 50 mg/L	
	SO ₄	The 95 th percentile of the data m	ust be ≤ 150 mg/L	
Major Ions	Na	The 95 th percentile of the data m	ust be ≤ 40 mg/L	
	CI	The 95 th percentile of the data m	ust be ≤ 60 mg/L	
	Са	The 95 th percentile of the data m	ust be ≤ 80 mg/L	
	EC	The 95 th percentile of the data m	ust be ≤ 55 mS/m	
Physical variables	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8		
	Temperature	Variation of 2°C or 10% from background average temperature.		
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instru- habitats acceptable.		
Nutrionto	TIN	The 50 th percentile of the data m	ust be ≤ 1.0 mg/L	
Nutrients	PO ₄ -P	The 50 th percentile of the data m	ust be ≤ 0.025 mg/L	
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L		
	Chl-a periphyton	The 50 th percentile of the data m	ust be ≤ 21 mg/m ²	
	Ammonia	The 95 th percentile of the data m	ust be ≤ 43.75 μg/L.	
Response variables	Atrazine	The 95 th percentile of the data m	ust be ≤ 48.75 μg/L	
	Aluminium	The 95 th percentile of the data m	ust be ≤ 62.5 μg/L	
	Fluoride	The 95 th percentile of the data m	ust be ≤ 0.5 mg/L	
	Manganese	The 95 th percentile of the data must be \leq 180 µg/L		

Table 40: EWR Site: Olifants: Olifants_EWR2 - EcoSpecs relating to Physico-chemical data

Kranspoortspruit: OLI_EWR3

The site is located on the Kraanspoortspruit which flows into the Loskop Dam. There are no water quality sites on this river. The impacts should be limited as there is very limited agriculture in the upper parts and the river flows through a natural habitat.

The TEC is B category. The water quality ecospecs are based on the TEC.

River: Kranspo	oortspruit	EWR : Olifants_OLI_EWR3	No water quality site in vicinity of EWR site		
Water	quality metrics	ECOSPEC: TEC			
	Mg	The 95 th percentile of the data mus	t be ≤ 30 mg/L		
	SO4	The 95 th percentile of the data mus	t be ≤ 80 mg/L		
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 70mg/L		
	CI	The 95 th percentile of the data mus	t be ≤.40 mg/L		
	Ca	The 95 th percentile of the data mus	t be ≤ 32 mg/L		
	EC	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 30 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8			
Physical	Temperature	Variation of 2°C or 10% from background average temperature			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural tu acceptable.	rbidity range; minor silting of instream habitats		
Nutrionto	TIN	The 50 th percentile of the data mus	t be ≤ 0.75 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.02 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data mus	t be ≤ 15µg/L		
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 14.56 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data mus	t be ≤ 43.75 μg/L.		
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L			
	Fluoride	The 95 th percentile of the data mus	t be ≤ 2.5 mg/L		

Table 41: EWR Site: Kranspoortspruit: OLI_EWR3 - EcoSpecs relating to Physico-chemical data

Selons: Olifants_SEL1

EWR site Olifants _SEL1 is located on the Selons River in the Middle Olifants sub-catchment upstream of the confluence with the Olifants and includes the Bobbejaansdoom and the Kruis rivers. The impacts would be mainly from agriculture, with large natural areas in the catchment. Sampling point B32_191822 is located near this EWR site, however only EC and pH are monitored regularly. The 95th percentile for EC is 29.6mS/m, with a calculated TDS of 198 mg/L using a multiplication factor of 6.7.

The TEC is C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit or a RQO that was applicable for the site.

River: Selons		EWR : Olifants_SEL1	No water quality site in vicinity of EWR site		
Wate	r quality metrics	ECOSPEC: PES, TEC and RQO	·		
	Mg	The 95 th percentile of the data must	The 95 th percentile of the data must be \leq 50 mg/L		
	SO ₄	The 95 th percentile of the data must be \leq 150 mg/L			
Major lons	Na	The 95 th percentile of the data must	t be ≤ 92.5 mg/L		
	CI	The 95 th percentile of the data must	t be ≤.120 mg/L		
	Ca	The 95 th percentile of the data must	t be ≤ 80 mg/L		
	EC	The 95 th percentile of the data must	t be ≤ 55 mS/m		
Physical variables	рН	The 5 th and 95 th percentiles of the c	The 5 th and 95 th percentiles of the data must range from $5.6 - 9.2$		
	Temperature	Variation of 2°C or 10% from background average temperature.			
	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.5 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.			
Nutrionts	TIN	The 50 th percentile of the data must	t be ≤ 2.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.058 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data must	t be ≤ 20 μg/L		
	Chl-a periphyton	The 50 th percentile of the data must	t be \leq 21 mg/m ²		
	Ammonia	The 95 th percentile of the data must	t be ≤ 43.75 μg/L.		
Response	Atrazine	The 95 th percentile of the data must	t be ≤ 48.75 μg/L		
variables	Fluoride	The 95 th percentile of the data must	t be ≤ 3.52 mg/L		
	Aluminium	The 95 th percentile of the data must	t be ≤ 0.15 mg/L		
	Manganese	The 95 th percentile of the data must	t be ≤ 1.30 mg/L		
	Zinc	The 95 th percentile of the data must	t be ≤ 36 μg/L.		

Table 42: EWR Site: Selons: Olifants_SEL1 - EcoSpecs relating to Physico-chemical data

Olifants: Olifants_EWR 8

The site is located on the Olifants downstream of the Flag Boshielo Dam below the confluence with the Mohlapitse River in the Lower Olifants. The Olifants flows through numerous sprawling villages and would have impacts from tributaries flowing through areas of similar land-use. The closest monitoring point is B71_192537. Data is however limited and the current state shows the 95 percentile value for EC at 74 mS/m, which gives a calculated TDS vaue of 496 mg/L using a multiplication factor of 6.7. The 95 percentile value for sulphate is 82 mg/L and 50 percentile orthophosphate as 0.005 mg/L.

River: Olifants		EWR : Olifants_EWR8	No water quality site in vicinity of EWR site, however closest site is B71_192537		
Water quality metrics		ECOSPEC: PES and TEC	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data mus	t be ≤ 70 mg/L		
	SO ₄	The 95 th percentile of the data mus	t be ≤ 120 mg/L		
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 80 mg/L		
	CI	The 95 th percentile of the data mus	t be ≤ 75 mg/L		
	Са	The 95 th percentile of the data mus	t be ≤ 40 mg/L		
	EC	The 95 th percentile of the data must be \leq 75 mS/m			
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitate acceptable.			
Nutrionts	TIN	The 50 th percentile of the data must be \leq 3.0 mg/L			
Nuthents	PO ₄ -P	The 50 th percentile of the data must be \leq 0.058 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data mus	t be ≤ 20 μg/L		
_	Chl-a periphyton	The 50 th percentile of the data mus	t be ≤ 21 mg/m²		
Response variables	Ammonia	The 95 th percentile of the data mus	t be ≤ 43.75 μg/L.		
	Atrazine	The 95 th percentile of the data mus	t be ≤ 48.75 μg/L		
	Fluoride	The 95 th percentile of the data must be \leq 3.52 mg/L			

Table 43: EWR Site: Olifants: Olifants_EWR8 - EcoSpecs relating to Physico-chemical data

Spekboom: Olifants_SPE1

This EWR site is located on the lower Spekboom River in the Steelpoort sub-catchment below the confluence with the Waterval River. There are considerable areas of irrigation upstream of this point on the Waterval and below the confluence and large natural areas on the Spekboom upstream of the confluence. The closest monitoring point is B42_192622, however data is limited. The current state shows a 95 percentile EC value of 62 mS/m (calculated TDS of 415 mg/L) and a 50 percentile orthophosphate value of 0.022 mg/L. The pH is slightly elevated with a lower limit of 7.6 and an upper limit of 8.6.

The TEC is C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit or a RQO that was applicable for the site (manganese).

River: Lower S	pekboom	EWR : Olifants_SPE1	No water quality site in vicinity of EWR site	
Water	quality metrics	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data m	ust be ≤ 50 mg/L	
	SO ₄	The 95 th percentile of the data m	ust be ≤ 60 mg/L	
Major Ions	Na	The 95 th percentile of the data m	ust be ≤ 40 mg/L	
	CI	The 95 th percentile of the data m	ust be ≤ 60 mg/L	
	Са	The 95 th percentile of the data m	ust be ≤ 40 mg/L	
	EC	The 95 th percentile of the data m	ust be ≤ 55 mS/m	
Physical variables	рН	The 5 th and 95 th percentiles of the data must range from $5.9 - 8.8$		
	Temperature	Variation of 2°C or 10% from background average temperature.		
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.		
Nutrianto	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.025 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data m	ust be ≤ 20 μg/L	
	Chl-a periphyton	The 50 th percentile of the data m	ust be ≤ 21 mg/m²	
	Ammonia	The 95 th percentile of the data m	ust be ≤ 43.75 µg/L.	
Response variables	Atrazine	The 95 th percentile of the data m	ust be ≤ 78.5 µg/L	
Vallabiee	Aluminium	The 95 th percentile of the data m	ust be ≤ 150 μg/L	
	Fluoride	The 95 th percentile of the data m	ust be ≤ 3.52 mg/L	
	Manganese	The 95 th percentile of the data must be \leq 1.3 mg/L		

Table 44: EWR Site: Spekboom: Olifants_SPE1 - EcoSpecs relating to Physico-chemical data

Upper Bylde: Olifants_BLY1

This EWR site isloacted in the upper reaches of the Blyde River, upstream of the confluence with the Treur River and the Blyde River Canyon Reserve in the Steelpoort sub-catchment. In terms of water quality there should b eno major impacts on this stretch of river. Monitoring point B6H1 (B60_90489) is located on the Blyde River at Willemsoord. The chemical water quality at this point is very good and there is considerable data. The 95 percentile TDS value at this point is 170 mS/m, sulphate of 21 mg/L, chloride of 7 mg/L and orthophosphate of 0.01 mg/L.

River: Upper E	Blyde	EWR : Olifants_BLY1	Downstream site B6H001Q01		
Water	r quality metrics	ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data	The 95 th percentile of the data must be \leq 20 mg/L		
	SO4	The 95 th percentile of the data	must be ≤ 20 mg/L		
Major Ions	Na	The 95 th percentile of the data	must be ≤ 10mg/L		
	CI	The 95 th percentile of the data	must be ≤.20 mg/L		
	Са	The 95 th percentile of the data	must be ≤ 32 mg/L		
EC		The 95 th percentile of the data	must be ≤ 30 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from $5.9 - 8.8$			
Physical	Temperature	Variation of 2°C or 10% from background average temperature			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 8.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instr habitats acceptable.			
Nutrionts	TIN	The 50 th percentile of the data must be ≤ 0.5 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.025 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data	must be ≤ 15 μg/L		
_	Chl-a periphyton	The 50 th percentile of the data	must be \leq 14.56 mg/m ²		
Response variables	Ammonia	The 95 th percentile of the data	must be ≤ 15 μg/L.		
	Atrazine	The 95 th percentile of the data	must be $\leq 9 \mu g/L$		
	Fluoride	The 95 th percentile of the data	must be ≤ 0.75 mg/L		

Table 45: EWR Site: Upper Bylde: Olifants_BLY1 - EcoSpecs relating to Physico-chemical data

Olifants: Olifants_EWR 11

EWR site Olifants_EWR11 is located on the Olifants River upstream from the confluence with the Blyde River. Major impacts in this area relate to run-off from sprawling villages and agricultural impacts. The chemical quality at monitoring point B7H9 (B71_90507) shows these impacts with a 95 percentile value for chloride of 99 mg/L, TDS of 561 mg/L, sulphate of 68 mg/L and 50 percentile value for orthophosphate of 0.02 mg/L.

River: Olifants		EWR : Olifants_EWR11	Downstream site B7H009Q01	
Water of	quality metrics	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must	t be ≤ 50 mg/L	
	SO ₄	The 95 th percentile of the data must	t be ≤ 100 mg/L	
Major Ions	Na	The 95 th percentile of the data must	t be ≤ 80 mg/L	
	CI	The 95 th percentile of the data must	t be ≤ 75 mg/L	
	Са	The 95 th percentile of the data must	t be ≤ 40 mg/L	
	EC	The 95 th percentile of the data must	t be ≤ 70 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8		
Physical	Temperature	Variation of 2°C or 10% from background average temperature.		
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L		
	Turbidity	Vary (small amount) from natural tur acceptable.	bidity range; minor silting of instream habitats	
Nutrionto	TIN	The 50 th percentile of the data must	t be ≤ 2.0 mg/L	
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.091 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data must	t be ≤ 20 μg/L	
	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²		
Response variables	Ammonia	The 95 th percentile of the data must	t be ≤ 43.75 μg/L.	
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L		
	Fluoride	The 95 th percentile of the data must	t be ≤ 3.52 mg/L	

Table 46: EWR Site: Olifants:	Olifants	EWR11 -	EcoSpecs	relating to	Physico-	chemical	data
	omanto_		_000p000	rolating to	1 11,0100	onionnioun	aala

Lower Bylde: Olifants_EWR 12

This EWR site is located on the Blyde River just upstream of the confluence with the Olifants River. There are large areas of agricultural land and irrigation upstream of this site, as well as the Blyderivierspoort Dam. Monitoring point B6H4 (B60_90491) has extensive data and indicates 95 percentiles of TDS of 187 mg/L, EC of 26 mS/m, chloride of 8.6 mg/L, sulphate of 18 mg/L and orthophosphate (50 percentile) of 0.008 mg/L.

River: Lower	Blyde	EWR : Olifants_EWR12 Upstream site B6H004Q01		
Wate	r quality metrics	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must be ≤ 15 mg/L		
	SO ₄	The 95 th percentile of the data must be \leq 20 mg/L		
Major Ions	Na	The 95 th percentile of the data must be \leq 15mg/L		
	CI	The 95 th percentile of the data must be \leq 20 mg/L		
	Ca	The 95 th percentile of the data must be \leq 32 mg/L		
	EC	The 95 th percentile of the data must be \leq 30 mS/m		
Physical	рН	The 5 th and 95 th percentiles of the data must range from $5.9 - 8.8$		
	Temperature	Variation of 2°C or 10% from background average temperature		
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 8.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.		
Nutrionto	TIN	The 50 th percentile of the data must be \leq 0.5 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.020 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 15 µg/L		
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 14.56 mg/m ²		
Response variables	Ammonia	The 95 th percentile of the data must be \leq 15 µg/L.		
, and a second	Atrazine	The 95 th percentile of the data must be \leq 19 µg/L		
	Fluoride	The 95 th percentile of the data must be \leq 0.5 mg/L		

Table 47: EWR Site: Lower Bylde: Olifants_EWR12 - EcoSpecs relating to Physico-chemical data

Olifants: Olifants_EWR 13

The EWR site is located on the Olifants River 20km upstream from the Ga-Selati confluence, upstream of the Balule Nature Reserve Complex and Phalaborwa mining, industrial and wastewater treatment works impacts (Ga-Selati River). The Blyde River confluences with the Olifants approximately 8 kilometers upstream of this point. The upstream impacts are related to agriculture and diffuse sources from villages. The water quality monitorimg point B7H7 (B72_90503) is located just below the Makhutswi confluence with the Olifants. The site has extensive data for the period April 2005 to March 2016 and indicates 95 percentiles of TDS of 431 mg/L, EC of 60 mS/m, chloride of 51 mg/L, sulphate of 66 mg/L and orthophosphate (50 percentile) of 0.015 mg/L.

River: Olifants	6	EWR : Olifants_EWR13	Upstream site B7H007Q01	
Water quality metrics		ECOSPEC: PES and REC		
	Mg	The 95 th percentile of the data m	The 95 th percentile of the data must be ≤ 50 mg/L	
	SO ₄	The 95 th percentile of the data must be ≤ 80 mg/L		
Major Ions	Na	The 95 th percentile of the data m	nust be ≤ 92.5 mg/L	
	CI	The 95 th percentile of the data m	nust be ≤.70 mg/L	
	Са	The 95 th percentile of the data m	nust be ≤ 50 mg/L	
	EC	The 95 th percentile of the data m	nust be ≤ 55 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8		
Physical	Temperature	Variation of 2°C or 10% from background average temperature.		
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.		
Nutrionte	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.025 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data m	nust be ≤ 20 μg/L	
	Chl-a periphyton	The 50 th percentile of the data must be $\leq 21 \text{ mg/m}^2$		
Response	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.		
variables	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L		
	Aluminium	The 95 th percentile of the data must be \leq 62.5 µg/L		
	Fluoride	The 95 th percentile of the data must be \leq 2.5 mg/L		

Table 48: EWR Site: Olifants: Olifants_EWR13 - EcoSpecs relating to Physico-chemical data

Olifants: Olifants_EWR 16

This EWR site is located on the Olifants River, the furthest downstream EWR site in the system, approximately 6km upstream from the confluence with the Letaba River at the Olifants River Gorge (KNP Eastern border with Mozambique). It is below the confluence with the Timbavati River in the Park. The chemical water quality at water quality monitoring point B7H17 (B73_90515) for the period January 2006 to May 2016 shows the impacts from the Phalaborwa area with 95 percentile data for TDS of 490 mg/L, chloride 63 mg/L, sulphate 80 mg/L and a 50 percentile orthophosphate level of 0.017 mg/L.

River: Olifants		EWR : Olifants_EWR16	Downstream site B7H017Q01		
Water quality metrics		ECOSPEC: PES and TEC	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data m	The 95 th percentile of the data must be \leq 30 mg/L		
	SO ₄	The 95 th percentile of the data m	The 95 th percentile of the data must be ≤ 80 mg/L		
Major Ions	Na	The 95 th percentile of the data m	nust be ≤ 70mg/L		
	CI	The 95 th percentile of the data m	nust be ≤ 40 mg/L		
	Ca	The 95 th percentile of the data m	nust be ≤ 32 mg/L		
	EC	The 95 th percentile of the data m	The 95 th percentile of the data must be ≤ 30 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8			
Physical	Temperature	Variation of 2°C or 10% from background average temperature			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 8.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instrea habitats acceptable.			
Nutrionts	TIN	The 50 th percentile of the data must be \leq 0.75 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.02 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L			
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.			
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L			
	Fluoride	The 95 th percentile of the data must be \leq 2.5 mg/L			

Table 49: EWR Site: Olifants: Olifants_EWR16 - EcoSpecs relating to Physico-chemical data

Olifants: Olifants_EWR5

This EWR site is located on the Olifants River downstream from the confluence of the Selons River. The site is downstream of the Loskop Dam and the major impacts would be from the extensive irrigation in the area. There is no water quality monitoring site in this area. The closest point is B20_88595, however the data is extremely limited. The calculated TDS value from a 95 percentile EC value of 82.3 mS/m for the period July 2009 to December 2014) is 550 mg/L.

River: Olifants	6	EWR : Olifants_EWR5	No water quality site in vicinity of EWR site		
Water quality metrics		ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 40 mg/L		
	SO ₄	The 95 th percentile of the data must be ≤ 125 mg/L			
Major lons	Na	The 95 th percentile of the data mus	st be $\leq 60 \text{ mg/L}$		
	CI	The 95 th percentile of the data mus	st be \leq 60 mg/L		
	Ca	The 95 th percentile of the data mus	st be \leq 40 mg/L		
	EC	The 95 th percentile of the data mus	st be ≤ 75 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habita acceptable.			
Nutrionto	TIN	The 50 th percentile of the data must be \leq 2.0 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.058 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data mus	st be ≤ 20 µg/L		
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.			
	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L			
	Fluoride	The 95 th percentile of the data must be ≤ 3.52 mg/L			

|--|

Lower Elands: Olifants_EWR6

This EWR site is located on the Elands River downstream of the Rhenosterkop Dam and Mkombo Nature Reserve. The only water quality monitoring with adequate data is B3R5 (B31-90466) on the Rhenosterkop Dam wall. 95 percentile data for the period January 2006 to April 2016 indicate the impacts from upstream agricultural activities with TDS at 371 mg/L, chloride at 51 mg/L and fluoride at 1.5 mg/L.

River: Lower El	ands	EWR : Olifants_EWR6	Downstream site B3R005Q01		
Water quality metrics		ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data must be \leq 20 mg/L			
	SO ₄	The 95 th percentile of the data must	The 95 th percentile of the data must be \leq 30 mg/L		
Major Ions	Na	The 95 th percentile of the data must	: be ≤ 80 mg/L		
	CI	The 95 th percentile of the data must	: be ≤.80 mg/L		
	Ca	The 95 th percentile of the data must	: be ≤ 30 mg/L		
	EC	The 95 th percentile of the data must	: be ≤ 55 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.6 – 9.2			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 6.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitat acceptable.			
Nutrionto	TIN	The 50 th percentile of the data must be \leq 3.0 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.091 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 30 µg/L			
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 42 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.			
Variables	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L			
	Fluoride	The 95 th percentile of the data must be \leq 2 mg/L			

Table 51: EWR Site Lower Elands:	Olifants_	EWR6 -	EcoSpecs	relating to	Physico	-chemical	data
		-			,		

Olifants: Olifants_EWR7

This EWR site is located on the Olifants River below Flag Bashielo Dam, upstream the confluence of the Ngwaritsi River, and just downstream of the non-perenial Nkumpi River. There are some gypsum and lime mines on an unnamed tributary that drains towards the Nkumpi River. Other impacts would be from run-off from the villages and limited agriculture. There are no water quality monitoring points in the area with recent data.

The TEC is D category. The water quality ecospecs are based on the South African water quality guidelines and the TEC whichever comprised the stricter limit.

River: Olifants		EWR : Olifants_EWR7	No water quality site in vicinity of EWR site	
Water quality metrics		ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must be ≤ 70 mg/L		
	SO ₄	The 95 th percentile of the data must be ≤ 120 mg/L		
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 80 mg/L	
	CI	The 95 th percentile of the data mus	t be ≤ 75 mg/L	
	Са	The 95 th percentile of the data mus	t be ≤ 40 mg/L	
	EC	The 95 th percentile of the data must be ≤ 75 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.0 – 10.0		
Physical	Temperature	Variation of 2°C or 10% from background average temperature.		
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 5.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitat acceptable.		
Nutrionto	TIN	The 50 th percentile of the data must be \leq 3.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.125 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 30 µg/L		
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 42 mg/m ²		
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.		
	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L		
	Fluoride	The 95 th percentile of the data must be \leq 1.2 mg/L		

Table 52: EWR Site Olifants	Olifants	EWR7 - EcoSpecs relatin	a to Ph	vsico-chemical da	ata
	Omanto_		yiu n	ysico-chemical u	ala

Steelpoort: Olifants_EWR9

This EWR site is located in the middle reaches of Steelpoort River below the confluence of the Dwars (Steelpoort Park). The point is some 30 kms downstream of De Hoop Dam and the major impacts at this point will be the mines and industries on the Dwars River and in the Steelpoort Valley. The closest water quality monitoring point near this site is B41_1000009855, approximately 8 kms downstream. The data is however very limited. The 95 percentile TDS value calculated from the EC of 91.4 mS/m is 620 mg/L showing the impacts from the upstream activities.

The TEC is C/D category. The water quality ecospecs are based on the South African water quality guidelines and the TEC whichever comprised the stricter limit.

River: Steelpo	port	EWR : Olifants_EWR9	No water quality site in vicinity of EWR site (only 8km downstream)	
Water quality metrics		ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must be \leq 70 mg/L		
	SO ₄	The 95 th percentile of the data mus	t be ≤ 250 mg/L	
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 115 mg/L	
	CI	The 95 th percentile of the data mus	t be ≤.175 mg/L	
	Ca	The 95 th percentile of the data mus	t be ≤ 80 mg/L	
	EC	The 95 th percentile of the data must be ≤ 85 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.0 – 10.0		
Physical	Temperature	Variation of 2°C or 10% from background average temperature.		
variables	Dissolved oxygen	The 5 th percentile of the data must be ≥ 5.0 mg/L		
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.		
Nutrionto	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.025 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data mus	t be ≤ 20 μg/L	
	Chl-a periphyton	The 50 th percentile of the data mus	t be ≤ 21 mg/m ²	
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.		
Vallables	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L		
	Fluoride	The 95 th percentile of the data must be \leq 3.52 mg/L		

Table 53: EWR Site Steelpoort: Olifants_EWR9 - EcoSpecs relating to Physico-chemical data

Steelpoort: Olifants_EWR10

This EWR site is located on the lower reaches of the Steelpoort River towards the confluence of the Olifants River (Great Escarpment Mountains Ecoregion). The upstream impacts from this site include the mines and industries in the Steelpoort Valley, as well as impacts from urban development. There are also several villages along this stretch of river. Upstream site B4H11 (B41_90473) and downstream site B4H25 (B41_193091) have similar data with slight deterioration at the downstream site. For the period March 2012 to March 2016, the chemicals water quality has 95 percentile value for TDS: 378 mg/L, chloride 43 mg/L, orthophosphate 0.01 mg/L and sulphate 31 mg/L.

The TEC is D category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

.

Pivor: Lowor St	toolpoort	EWP - Olifonte EW/P10	No water quality site in vicinity of EWR site		
River. Lower S	leeipoort	EWR : Olliants_EWR IO	use upstream site B4H011Q01 (B4H11)		
Water quality metrics		ECOSPEC: PES, RQO and TEC	ECOSPEC: PES, RQO and TEC		
	Mg	The 95 th percentile of the data must be \leq 40 mg/L			
	SO ₄	The 95 th percentile of the data must be \leq 50 mg/L			
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 40 mg/L		
	CI	The 95 th percentile of the data mus	t be ≤ 50 mg/L		
	Са	The 95 th percentile of the data mus	t be ≤ 50 mg/L		
	EC	The 95 th percentile of the data mus	t be ≤ 70 mS/m		
Physical variables	рН	The 5 th and 95 th percentiles of the data must range from 5.0 – 9.0			
	Temperature	Variation of 2°C or 10% from background average temperature.			
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.			
Nutrionto	TIN	The 50 th percentile of the data must be \leq 4.0 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.091 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 30 µg/L			
	Chl-a periphyton	The 50 th percentile of the data must be \leq 42 mg/m ²			
	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.			
Response	Atrazine	The 95 th percentile of the data must be \leq 48.8 µg/L			
variables	Fluoride	The 95 th percentile of the data must be ≤ 0.7 mg/L			
	Aluminium	The 95 th percentile of the data must be $\leq 62.5 \ \mu g/L$			
	Zinc	The 95 th percentile of the data must be \leq 14.4 µg/L			
	Manganese	The 95 th percentile of the data must be \leq 0.68 mg/L			

Table 54: EWR Site Lower Steelpoort: Olifants_EWR10 - EcoSpecs relating to Physico-chemical data

Upper Ga-Selati: Olifants_EWR14a

This EWR site is located on the Upper Ga-Selati River. The main impacts would be from villages and limited agriculture. The closest monitoring point is B7H14 (B72_90511) which has a large data set indicating good chemical water quality at this point. For the period February 2006 to March 2016, the chemical water quality has 95 percentile value for TDS: 206 mg/L and orthophosphate of 0.006 mg/L.

River: Upper (Ga-Selati	EWR : Olifants_EWR14a	No water quality site in vicinity of EWR site. Closest site is B7H140Q01		
Water quality metrics		ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 20 mg/L		
	SO ₄	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 10 mg/L		
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 15 mg/L		
	CI	The 95 th percentile of the data mus	t be ≤.15 mg/L		
	Ca	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 30 mg/L		
	EC	The 95 th percentile of the data must be \leq 35 mS/m			
	рН	The 5 th and 95 th percentiles of the data must range from 6.4 – 8.6			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.			
Nutrionto	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L			
Nuthents	PO ₄ -P	The 50 th percentile of the data must be \leq 0.01 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data mus	t be ≤ 20 μg/L		
_	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.			
Variables	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L			
	Fluoride	The 95 th percentile of the data must be \leq 0.7 mg/L			

Table 55: EWR Site Upper Ga-Selati: Olifants_EWR14a - EcoSpecs relating to Physico-chemical data

Lower Ga-Selati: Olifants_EWR14b

This EWR site is located on the lower Ga-Selati River, near Foskor in the Lowveld Ecoregion, near the confluence with the Olifants River. The impacts from the area are from the mines and the discharge from the Phalaborwa wastewater treatment works. The severe impacts from this area are shown by the results of the 95 percentile data for the period January 2006 to May 2016 at water quality monitoring point B7H19 (B72_90518) just upstream of the EWR site - TDS: 1 989 mg/L, calcium: 124 mg/L, chloride: 274 mg/L, fluoride: 3.2 mg/L, magnesium: 164 mg/L, sodium: 247 mg/L, orthophosphate (50 percentile): 0.5 mg/L and sulphate: 730 mg/L.

The TEC is D category. The water quality ecospecs are based on TEC due to the poor present state quality.

River: Lower Ga-Selati		EWR : Olifants_EWR14b	Upstream water quality site B7H19		
Water quality metrics		ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data must be ≤ 70 mg/L			
	SO ₄	The 95 th percentile of the data must be ≤ 250 mg/L			
Major Ions	Na	The 95 th percentile of the data mus	t be ≤ 115 mg/L		
	CI	The 95 th percentile of the data mus	t be ≤.175 mg/L		
	Ca	The 95 th percentile of the data mus	t be ≤ 80 mg/L		
	EC	The 95 th percentile of the data mus	The 95 th percentile of the data must be \leq 85 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from $5.0 - 10.0$			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 5.0 mg/L			
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habita acceptable.			
Nutrionto	TIN	The 50 th percentile of the data must be \leq 4.0 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.125 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 30 µg/L			
	Chl-a periphyton	The 50 th percentile of the data must be \leq 42 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 72.5 µg/L.			
	Atrazine	The 95 th percentile of the data must be \leq 78.5 µg/L			
	Fluoride	The 95 th percentile of the data must be ≤ 1.0 mg/L			

Table 56: EWR Site Lower Ga-Selati: Olifants_EWR14b - EcoSpecs relating to Physico-chemical data

Spookspruit: SPK_EWR1

This site is located on the Spookspruit at the R575, the main impacts at this point would the extensive upstream coal mines. The water quality data for the monitoring point located at the EWR site is limited to EC and pH, and some sulphate data. Monitoring point B1H2 downstream of the EWR site has an extensive data record and data for the period January 2006 to April 2016 is used. The 95 percentile data shows the sever impacts from the mine – TDS: 1 662 mg/L, calcium: 234 mg/L, magnesium: 259 mg/L and sulphate 1 567 mg/L.

River: Spookspruit		EWR : SPK_EWR1	No water quality site in vicinity of EWR site, but can use downstream site B1H200Q01
Water quality metrics		ECOSPEC: PES and TEC	
Major Ions	Mg	The 95 th percentile of the data must be \leq 50 mg/L	
	SO ₄	The 95 th percentile of the data must be \leq 250 mg/L	
	Na	The 95 th percentile of the data must be \leq 92.5 mg/L	
	CI	The 95 th percentile of the data must be ≤.120 mg/L	
	Са	The 95 th percentile of the data must be \leq 80 mg/L	
	EC	The 95 th percentile of the data must be ≤ 55 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8	
Physical variables	Temperature	Variation of 2°C or 10% from background average temperature.	
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L	
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.	
	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L	
Nutrients	PO ₄ -P	The 50 th percentile of the data must be \leq 0.025 mg/L	
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L	
Response variables	Chl-a periphyton	The 50 th percentile of the data must be $\leq 21 \text{ mg/m}^2$	
	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.	
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L	
	Fluoride	The 95 th percentile of the data must be ≤ 2.5 mg/L	

Table 57: EWR Site Spookspruit: SPK_EWR1 - EcoSpecs relating to Physico-chemical data

Dwars: DWA_EWR1

This EWR site is located on the Dwars River just above the confluence with the Steelpoort River. The main impacts will be from the upstream platinum mining. The monitoring site with adequate water quality data is B4H9 (B41_90471). The 95 percentile values for the period January 2006 to March 2016 are as follows: TDS: 414 mg/L and sulphate of 23 mg/L and 50 percentile for nitrate: 3.6 mg/L, which increases downstream towards the Steelpoort and is considerably higher than the nitrate concentrations detected in the Steelpoort River.

River: Dwars		EWR : DWA_EWR1	No water quality site in vicinity of EWR site, use water quality site B4H9
Water quality metrics		ECOSPEC: PES and TEC	
Major Ions	Mg	The 95 th percentile of the data must be \leq 50 mg/L	
	SO ₄	The 95 th percentile of the data must be \leq 30 mg/L	
	Na	The 95 th percentile of the data must be \leq 25 mg/L	
	CI	The 95 th percentile of the data must be \leq 20 mg/L	
	Са	The 95 th percentile of the data must be \leq 45 mg/L	
Physical variables	EC	The 95 th percentile of the data must be \leq 55 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 7.0 – 8.7	
	Temperature	Variation of 2°C or 10% from background average temperature.	
	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L	
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.	
Nutrients	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L	
	PO ₄ -P	The 50 th percentile of the data must be \leq 0.025 mg/L	
Response variables	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L	
	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²	
	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.	
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L	
	Fluoride	The 95 th percentile of the data must be $\leq 0.7 \ \mu g/L$	

Table 58: EWR Site Dwars River: DWA_EWR1 - EcoSpecs relating to Physico-chemical data

Ohrigstad: OLI_EWR8

This EWR site is located in quaternary catchment B60H and is situated on the R532 road to Blyde River Canyon. The site falls within the Blyde Nature Reserve. No gauging weirs or water quality monitoring sites as are present in the vicinity of the selected site. There are few impacts and this is evidenced by the chemical water quality at a point upstream on the Ohrigstadt River (B60_1000009803) and at the monitoring point B6H14 (B60_90496) on the Blyde River. At these points 95 percentile values for TDS are 174 mg/L and 158 mg/L respectively.

River: Ohrigstad		EWR : OLI_EWR8	No water quality site in vicinity of EWR site. Use upstream water quality site B60_1000009803
Water quality metrics		ECOSPEC: PES and TEC	
Major lons	Mg	The 95 th percentile of the data must be \leq 20 mg/L	
	SO ₄	The 95 th percentile of the data must be \leq 20 mg/L	
	Na	The 95 th percentile of the data must be \leq 15 mg/L	
	CI	The 95 th percentile of the data must be \leq 15 mg/L	
	Са	The 95 th percentile of the data must be \leq 25 mg/L	
Physical	EC	The 95 th percentile of the data must be ≤ 55 mS/m	
	рН	The 5 th and 95 th percentiles of the data must range from 6.4 – 8.8	
	Temperature	Variation of 2°C or 10% from background average temperature.	
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L	
	Turbidity	Vary (small amount) from natural turbidity range; minor silting of instream habitats acceptable.	
Nutrients	TIN	The 50 th percentile of the data must be \leq 1.0 mg/L	
	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.025 mg/L	
	Chl-a phytoplankton	The 50 th percentile of the data must be \leq 20 µg/L	
Response variables	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²	
	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.	
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L	
	Fluoride	The 95 th percentile of the data must be ≤ 0.5 mg/L	

Table 59: EWR Site Ohrigstad: OLI_EWR8 - EcoSpecs relating to Physico-chemical data

Letaba: Letaba_EWR7

This EWR site is located on the Letaba River in the Kruger National Park just upstream of Letaba Rest Camp and the Engelhard Dam/weir. There are few upstream impacts. The water quality data at downstream monitoring site B8H18 (B83_90529) show high 95 percentile TDS values (413 mg/L) as well as elevated levels of chloride (81 mg/L) and sodium (66 mg/L). This is very likely due to the low flow conditions of the river and the concentration of the salts.
River: Letaba		EWR: Letaba EWR7 Downstream site B8H018Q01			
Water	quality metrics	ECOSPEC: PES and TEC	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must	t be ≤ 50 mg/L		
	SO ₄	The 95 th percentile of the data must	t be ≤ 30 mg/L		
Major Ions	Na	The 95 th percentile of the data must	t be ≤ 92.5 mg/L		
	CI	The 95 th percentile of the data must	t be ≤.120 mg/L		
	Са	The 95 th percentile of the data must	t be ≤ 80 mg/L		
	EC	The 95 th percentile of the data must	t be ≤ 55 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural tur acceptable.	rbidity range; minor silting of instream habitats		
Nutrionto	TIN	The 50 th percentile of the data must	t be ≤ 2.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must	t be ≤ 0.058 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data must	t be ≤ 20 μg/L		
	Chl-a periphyton	The 50 th percentile of the data must be \leq 21 mg/m ²			
Response variables	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.			
	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L			
	Fluoride The 95 th percentile of the data must be \leq 0.7 mg/L				

Table 60: EWR Site: Letaba	Letaba E	WR7- EcoSpecs	relating to Ph	vsico-chemical	data
Table VV. LVIN OILE. LEIADA.	Letaba_L		relating to r r	iyaloo-onennoar	uala

Letsitele: Letaba_EWR2

This EWR site is located on the Letsitele River just downstream gauging weir B8H010 and upstream the Letaba River confluence. The impacts at this site are mostly from urban run-off. This is evidenced by the water quality data at site B8H10 (B81_90526), upstream of the EWR site where the 95 percentile for TDS is 226 mg/L and ammonium concentrations of 0.86 mg/L, nitrate of 0.6 mg/L and orthophosphate of 0.05 mg/L which would lead to eutrophic conditions.

The TEC is D category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Letsitele		EWR : Letaba EWR2 Upstream site B8H010Q01			
Water	quality metrics	ECOSPEC: PES and TEC			
	Mg	The 95 th percentile of the data must	t be ≤ 15 mg/L		
	SO ₄	The 95 th percentile of the data must be \leq 20 mg/L			
Major Ions	Na	The 95 th percentile of the data must	t be ≤ 30 mg/L		
	CI	The 95 th percentile of the data must	t be ≤ 35 mg/L		
	Са	The 95 th percentile of the data must	t be ≤ 30 mg/L		
	EC	The 95 th percentile of the data must	t be ≤ 45 mS/m		
	pH The 5 th and 95 th percentiles of the data must range from $6.0 - 9.0$				
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must l	be ≥ 5.0 mg/L		
	Turbidity	Vary (small amount) from natural tur acceptable.	bidity range; minor silting of instream habitats		
Nutrionto	TIN	The 50 th percentile of the data must	t be ≤ 4.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must	t be ≤ 0.125 mg/L		
	Chl-a phytoplankton	The 50 th percentile of the data must	t be ≤ 30 μg/L		
Response	Chl-a periphyton	The 50 th percentile of the data must be \leq 42 mg/m ²			
	Ammonia	The 95 th percentile of the data must	t be ≤ 72.5 μg/L.		
	Atrazine	The 95 th percentile of the data must	t be ≤ 78.5 μg/L		
Fluoride The 95 th percentile of the data must be \leq 0.7 mg/L			t be ≤ 0.7 mg/L		

Table 61: EWR Site Letsitele:	Letaba	EWR2	- EcoSpecs	relating to) Physico	-chemical	data
	Lotaba_		_000p000	, rolating to	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ononnour	autu

Great Letaba: Letaba_EWR 1

The site is located on the Great Letaba River between Ebenezer and Tzaneen Dams in the upper foothills geozone. The major impacts in this are related to forestry and plantations. The chemical water water quality at this point (B8H14) is excellent with a 95 percentile EC of 10 mS/m and a TDS of 72 mg/L. All other parameters are equally low.

The TEC is C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Great Le	etaba	EWR: Letaba EWR1 Downstream site B8H014Q01			
Water	quality metrics	ECOSPEC: PES and TEC	ECOSPEC: PES and TEC		
	Mg	The 95 th percentile of the data must	t be ≤ 10 mg/L		
	SO ₄	The 95 th percentile of the data must	t be ≤ 10 mg/L		
Major Ions	Na	The 95 th percentile of the data must	t be ≤ 15 mg/L		
	CI	The 95 th percentile of the data must	t be ≤.15 mg/L		
	Са	The 95 th percentile of the data must	t be ≤ 10 mg/L		
	EC	The 95 th percentile of the data must	t be ≤ 20 mS/m		
	рН	The 5 th and 95 th percentiles of the data must range from 6.5 – 8.6			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.			
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L			
	Turbidity	Vary (small amount) from natural tur acceptable.	bidity range; minor silting of instream habitats		
Nutrionto	TIN	The 50 th percentile of the data must	t be ≤ 2.0 mg/L		
Nutrients	PO ₄ -P	The 50 th percentile of the data must	t be ≤ 0.025 mg/L		
	Chl-a phytoplankton The 50 th percentile of the data must be \leq 20 µg/L		t be ≤ 20 μg/L		
Response	Chl-a periphyton	The 50 th percentile of the data must be $\leq 21 \text{ mg/m}^2$			
	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.			
	Atrazine	The 95 th percentile of the data must	t be ≤ 48.75 μg/L		
Fluoride The 95 th percentile of the data must be \leq 0.7 mg/L			t be ≤ 0.7 mg/L		

Table 62: EWR Site: Great Letaba: Letaba_EWR1 - EcoSpecs relating to Physico-chemical data

Broederstroom: Letaba_BRO1

The site is located in the upper catchment on the Broederstroom just upstream of Dap Naude Dam. The main impacts are from forestry and plantations. There are no water quality sites in this are but it is likely that the water quality is in a similar state as that at Letaba_EWR1.

The TEC is B/C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Broeder	rstroom	EWR : Letaba_BRO1	No water quality site in vicinity of EWR site			
Water	r quality metrics	ECOSPEC: PES and TEC				
	Mg	The 95 th percentile of the data m	The 95 th percentile of the data must be \leq 10 mg/L			
	SO ₄	The 95 th percentile of the data m	nust be ≤ 10 mg/L			
Major Ions	Na	The 95 th percentile of the data m	nust be ≤ 15 mg/L			
	CI	The 95 th percentile of the data m	nust be ≤15 mg/L			
	Са	The 95 th percentile of the data m	nust be ≤ 10 mg/L			
	EC	The 95 th percentile of the data m	nust be ≤ 20 mS/m			
	рН	The 5 th and 95 th percentiles of th	ne data must range from 6.5 – 8.6			
Physical	Temperature	Variation of 2°C or 10% from background average temperature.				
variables	Dissolved oxygen	The 5 th percentile of the data must be ≥ 7.0 mg/L				
	Turbidity	Vary (small amount) from natu habitats acceptable.	ral turbidity range; minor silting of instream			
Nutrionto	TIN	The 50 th percentile of the data m	nust be ≤ 1.0 mg/L			
Nutrients	PO ₄ -P	The 50 th percentile of the data m	nust be ≤ 0.025 mg/L			
	Chl-a phytoplankton	The 50 th percentile of the data m	nust be ≤ 20 μg/L			
	Chl-a periphyton	The 50 th percentile of the data m	nust be ≤ 21 mg/m²			
Response	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.				
variables	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L				
	Aluminium	The 95 th percentile of the data m	nust be ≤ 62.5 μg/L			
	Fluoride	The 95 th percentile of the data m	nust be ≤ 2.5 mg/L			

Table 63: EWR Site: Broederstroom: Letaba_BRO1 - EcoSpecs relating to Physico-chemical data

Shingwedzi: Shingwidzi_SHI1

This EWR site is located on the lower reaches of the Shingwidzi River before it enters Mozambique downstream of the Kanniedood Dam in the Kruger National Park. The wtaer quality impacts would be natural except for elevagted salts due to the non-perennial nature of the river.

The TEC is B/C category. The water quality ecospecs are based on the present state water quality and the TEC whichever comprised the stricter limit.

River: Shingw	vedzi	EWR : Shingwidzi_SHI1 No water quality site in vicinity of E					
Wate	r quality metrics	ECOSPEC: PES and TEC					
	Mg	The 95 th percentile of the data n	The 95 th percentile of the data must be \leq 30 mg/L				
	SO ₄	The 95 th percentile of the data n	nust be ≤ 80 mg/L				
Major Ions	Na	The 95 th percentile of the data n	nust be ≤ 70 mg/L				
	CI	The 95 th percentile of the data n	nust be ≤.40 mg/L				
	Са	The 95 th percentile of the data n	nust be ≤ 60 mg/L				
	EC	The 95 th percentile of the data n	nust be ≤ 55 mS/m				
	рН	The 5 th and 95 th percentiles of the data must range from 5.9 – 8.8					
Physical Temperature		Variation of 2°C or 10% from background average temperature.					
variables	Dissolved oxygen	The 5 th percentile of the data must be \geq 7.0 mg/L					
	Turbidity	Vary (small amount) from natu habitats acceptable.	aral turbidity range; minor silting of instream				
Nutrionto	TIN	The 50 th percentile of the data n	nust be ≤ 0.75 mg/L				
Nutrients	PO ₄ -P	The 50 th percentile of the data n	nust be ≤ 0.02 mg/L				
	Chl-a phytoplankton	The 50 th percentile of the data n	nust be ≤ 15 μg/L				
	Chl-a periphyton	The 50 th percentile of the data n	nust be \leq 14.56 mg/m ²				
Response	Ammonia	The 95 th percentile of the data must be \leq 43.75 µg/L.					
variables	Atrazine	The 95 th percentile of the data must be \leq 48.75 µg/L					
	Aluminium	The 95 th percentile of the data n	nust be ≤ 62.5 μg/L				
	Fluoride	The 95 th percentile of the data must be \leq 2.5 mg/L					

Table 64: EWR Site: Shingwedzi: Shingwidzi_SHI1 - EcoSpecs relating to Physico-chemical data

4.3 Fish, Macroinvertebrates and Habitat Integrity

Ecological specifications for the EWR sites within the Olifants, Letaba and Shingwedzi catchment biotic responses components are provided in **Table 65** to **Table 84** below.

Ecological specifications for the biological sites within the Olifants, Letaba and Shingwedzi catchment biotic responses components are provided in **Table 85** to **Table 123** below.

The following approach was adopted for the biological ecospecs. The current or desired PES was used as the ecostatus that should be achieved. With regard to the fish (FRAI) and macroinvertebrates (MIRAI) the reference values (expected species for fish, SASS score, and expected number of families and ASPT for the macroinvertebrates) were used as the best possible scenario (PES A). From that the lowered values for the current or desired PES was calculated as a percentage of the expected values.

This was subsequently used with the frequency (FROC) of the species or families present to determine possible indicator species and families that should be present under the specific flow conditions listed in the ecospecs.

The ecospecs for the instream habitat and riparian zone was based on current impacts that can be considered as possible mitigation measures to improve the habitat to the desired state.

4.3.1 EWR Sites within the Olifants, Letaba and Shingwedzi Catchment

Refer to **Table 65** to **Table 123** for the ecological specifications from a biotic perspective for the Olifants, Letaba and Shingwedzi catchments.

Fish		Special conditions	Aquatic Macroinvertebrates Special conditions		Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
	FRA	N		MIRAI				
No. of indigenous fish species that should be recorded		Flow dependant spp. must be recorded in FS habitat - 15 - 20 individuals per 20min electroshock effort	SASS5 Score	135-150 or better (220 = ref conditions)	Improve water quality - need to sample Tricorythidae and Hydropsycidae	Habitat integrity: Instream	vegetation, root wads and undercut banks inundated during low flow conditions.	
	15	Habitat must include root wads and undercut banks to ensure habitat sensitive spp. can occur - 2 - 4 specimens per 20 min effort.	No. of Taxa	62 expected		Habitat integrity: Riparian	Manage alien infestations	
			ASPT	4.7-4.8 or better (7 = ref conditions)				

 Table 65: Ecological specifications for Upper Elands River:
 Olifants_ELA1

Considerations
Absence of flow dependent fish (e.g.: Labeo cylindricus, L. molybdinus) and the absence of fish which are habitat sensitive (e.g. Marcusenius
macrolepidotus).
Absence of least sensitive aquatic macroinvertebrates however the site seems to be representative of those taxa (e.g. Simuliidae, Corixidae)
Fish migration link is fragmented due to small upstream weirs
Small stream thus sensitive to flow changes

Monitoring

Frequency

Chemical and <i>in situ</i> water quality should be monitored	Bi-annually
Diatom sampling	Every 2 years
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet season
Riparian VEGRAI should be Monitored	Every 5 years
The IHI should be conducted every 2 years	Every 2 years

Table 66: Ecological specifications for Lower Wilge River: Olifants_EWR4

Fish		Special conditions	Aquatic Special Macroinvertebrates conditions		Habitat Integrity	Special conditions	
	FRA	AI		MIRAI			Flow pooded for babitat
No. of indigenous fish species that should be recorded	14	Flow sensitive and habitat sensitive spp. must be present - increase low flows	SASS5 Score	180-190 or better (220 = ref conditions)	Improve flow velocities to ensure suitable habitat for Tricorythidae and Aeshnidae	Habitat integrity: Instream	diversity, including marginal vegetation as habitat.
		Sample 30+ CPRE, 30+ BMAR and 10 AURA per 20min electroshock effort	No. of Taxa	64 expected		Habitat integrity: Riparian	Manage cattle trampling

Considerations
As the Olifants system is already degraded, further degradation of the Wilge River needs to be prevented and aimed to be improved
Absence of flow dependent fish (e.g.: Labeo cylindricus and L. molybdinus)
Velocity sensitive aquatic macroinvertebrates and those specific to certain habitat availability (e.g. Trichorythidae, Leptophelbiidae)
High nutrient loads owing to considerable algal growth
Fish migration link between the Olifants system and upper Wilge River is important
Sensitive stream owing to the stream geomorphology and profile
The Wilge River brings higher flows and the natural cues into the highly regulated and fragmented Olifants system
The recon strategy (2011) also requires a category B for the Wilge

Monitoring	Frequency
Chemical and in situ water quality should be monitored	Bi-annually
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season

Riparian VEGRAI should be Monitored	Every 5 years
The IHI should be conducted	Annually
Ecological categories specified as per Resource Quality Objectives must be enforced	

Table 67: Ecological specifications for the Upper Wilge River: Olifants_WIL1

Fish		Special conditions	Aquatic Macroinvertebrates		Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FR		AI	MIRAI				Habitat integrity:	Must improve WQ – concern about organic pollution
No. of indigenous fish species				190+ expected	Instream	Must improve flows to get better habitat for biota.		
that should be recorded			Lower erosion.					
	9 species expected	PES D Should collect 4-5 species in a 20min effort.	Prevent further riparian zone destruction.	Expected 60+ families	Habitat integrity: Riparian	Lower erosion. Prevent further riparian zone destruction.		
			ASPT	5.6-5.8				

Considerations	
Upper reaches an important water source and biota habitat in the system.	

Monitoring	Frequency
Chemical, microbial and in situ water quality should be monitored	Bi-annually
Turbidity and deposition	monitored monthly during the wet season and once during the dry season
Diatom samples should be taken	Minimum every 2 years
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season

Monitoring	Frequency
Riparian VEGRAI should be conducted	Every 5 years
The IHI should be conducted	Annually

Table 68: Ecological specifications for the Olifants River: Olifants_EWR1

Fish	ı	Special conditions	Aquatic Macroinvertebrates		Special conditions	Habitat Integrity	Special conditions
	FRA	I	MIRAI				
No. of indigenous fish species that should be recorded	19 (20 - if eels are included)	In 20min electroshock, sample at least 10 BMAR, 30+ CPRE, 5 LCYL	SASS5 Score	125-135 or better (220 = ref conditions)	Improve flow velocities to ensure suitable habitat for Tricorythidae and Aeshnidae	Habitat integrity: Instream	diversity, including marginal vegetation as habitat.
			No. of Taxa	62 expected			
			ASPT	4.1-4.3 or better (7 = ref conditions)		Habitat integrity: Riparian	Control alien invasives and stabilise banks

Considerations

Absence of flow dependent sensitive fish species, lack of habitat diversity and poor water quality (e.g.: Labeobarbus marequensis, Labeo molybdinus, Labeo cylindricus and Petrocephalus wesselsi. P. wesselsi is habitat specific and thus absent from the site at the time of the survey. Alien invasive fish species namely *Micropterus salmoides* has an impact on the small fish species (e.g. *Enteromius (Barbus) anoplus, E. eutaenia*). The identified *Gambusia affinis* food source is eggs and thus further impacts on the indigenous fish populations by preying on their eggs. The presence of *Cyprinus carpio* further is competing for habitat between fish namely *Tilapia rendalli* and *Tilapia sparrmanii*.

Velocity sensitive aquatic macroinvertebrates, lack of habitat diversity and poor water quality (e.g: Perlidae and Heptegeniidae). Porifera were not identified owing to the siltation on the rocks.

High nutrient loads owing to considerable algal growth.

Monitoring	Frequency
Chemical and <i>in situ</i> water quality should be monitored.	Quarterly
Diatom samples should be taken	Every 2 years

Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored together with the IHI	Annually towards the end of the wet season
Riparian VEGRAI should be conducted	Every 3 years
The RQOs set for the EWR1 must be stringently enforced	

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions	
	F	RAI		MIRAI			
No. of indigenous fish species that should		When sampling, should collect 5 BMAR, 5 CPRE and 5 LCYL in a 20min electro shock effort	SASS5 Score	125-135 or better (220 = ref conditions)	Habitat integrity: Instream	Increased flows to flush system	
be recorded	11		No. of Taxa	62 expected			
			ASPT	4.1-4.3 or better (7 = ref conditions)	Habitat integrity: Riparian	Increased flows to flush system	

Considerations
Absence of flow dependent fish (e.g.: Labeobarbus marequensis, Enteromius (Barbus) paludinosus,)
Velocity sensitive aquatic macroinvertebrates, lack of habitat diversity and poor water quality (e.g: Perlidae and hydropsychidae).
Small stream thus sensitive to flow changes
Marginal and bank habitat requires improvement
High nutrient loads owing to considerable algal growth

Monitoring	Frequency
A task team urgently needs to address the issues surrounding the Steve Tshwete Waste Water Treatment Plant	
downstream of the EWR site.	
Stringent management measures for this reach and the broader Klein-Olifants should be revised and updated	
within the existing catchment management plan	
The proposed water quality RQOs for the nutrients are set for EWR3 should be stringently enforced	
Chemical and <i>in situ</i> water quality should be monitored quarterly downstream of the WWTW in addition to the monitoring at this EWR site	Annually

Diatom samples should be taken	Annually
Whole Effluent Toxicity (WET) testing should be conducted	Quarterly
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season
Riparian VEGRAI should be conducted	Every 5 years
The IHI should be conducted	Annually

Table 70: Ecological specifications for the Olifants River: Olifants_EWR2

Fish	า	Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI	Habitat integrity:	Improve flow to increase	
No. of indigenous		Collect BMAR (30+), LCYL (20+) and CPRE (30+) / 20min shock effort	SASS5 Score	165-175 or better (220 = ref conditions)	Instream	marginal vegetation as habitat
that should be recorded	23 (including eel spp.)	Must capture 10 each of a least four (4) spp. of the expected small barbs	No. of Taxa	64 families expected	Habitat integrity:	Improve flow to increase
			ASPT	5.5-5.7 or better (7 = ref conditions)	Riparian	habitat

Considerations
Absence of flow and flow depth dependent fish (e.g.: Labeo rosae and Micralestes acutidens, Mesobola brevianalis and Marcusenius macrolepidotus)
Velocity sensitive aquatic macroinvertebrates and those specific to certain habitat availability and require good water quality were absent (e.g.
Hydropschidae and Heptogeniidae)
High nutrient loads owing to considerable algal growth and high siltation

Monitoring	Frequency
Chemical and <i>in situ</i> water quality should be monitored	Annually
Diatom samples should be taken	Annually
Whole Effluent Toxicity (WET) testing should be conducted	Quarterly
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season
Riparian VEGRAI should be conducted	Every 5 years
The IHI should be conducted	Annually

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	19	A high number of mining applications are in the process within the upper reaches of the Olifants system which may impact on the water quality and flow in the system. This needs to be managed		A high number of mining applications are in the process within the upper reaches of the Olifants system which may impact on the water quality and flow in the system. This needs to be managed	Habitat integrity: Instream	A high number of mining applications are in the process within the upper reaches of the Olifants system which may impact on the water quality and flow in the system. This needs to be managed.
		When sampling - 20min shock - sample AURA 5, BMAR 20+ and CPRE 15 - and at least 3 spp. of small barbs	SASS5 Score	185-190 or better (220 = ref conditions)	Habitat integrity: Riparian	Important to rehabilitate trampling and riparian vegetation.
			No. of Taxa	62 expected		
			ASPT	5.94-5.97 (7 = ref conditions)		

Table 71: Ecological specifications for the Kranspoortspruit: OLI-EWR3

Considerations
Absence of flow dependent fish (e.g.: Oreochromis mossambicus and Marcusenius macrolepidotus)
Velocity sensitive aquatic macroinvertebrates (Heptageniidae and hydropsychidae). Their abundance has decreased due to lower flow depth and exposed habitats.

The system is an important refuge area for fish species within the Olifants system (3 of the reference species i.e. *Enteromius (Barbus) eutaenia, Labeobarbus marequensis and Chiloglanis pretoria*e are shallow, fast, deep dependent during all life cycles. The rare and unique *Petrocephalus wesselsi (to the system)* has been recorded previously)

Small stream thus sensitive to flow and quality changes

Monitoring	Frequency
Owing to limited upstream impacts, and the possible presence of the rare and endangered BLIN and unique	
BBIF the status of the river needs to be improved	
REMP sampling must be conducted every 2 years	Every 2 years

Table 72: Ecological specifications for the Selons River: Olifants_SEL1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		Improve habitat diversity - flows	MIRAI		La construcción de la construcción	
No. of indigenous fish species	12	In 20min electro sampling - sample 30+ BMAR,	SASS5 Score	141-149 or better (220 = ref conditions)	Instream	Improve quality - lower algae loads
that should be recorded		of small barbs and a Labeo spp.	No. of Taxa	64 families expected	Habitat integrity: Riparian	Alien vegetation control and stabilising of banks.
			ASPT	4.52-4.58 (7 = ref conditions)		

Considerations
Absence of flow dependent fish (e.g.: Labeo cylindricus, L. molybdinus and L. rosae)
Velocity and water quality sensitive aquatic macroinvertebrates (Heptageniidae and hydropsychidae).
Fish migration link is fragmented due to weirs, impoundments and abstraction
Small stream thus sensitive to flow changes
The upstream Rooikraal Dam has no release capacity. Flow at site only from Kruis River

Monitoring	Frequency
REMP sampling must be conducted every 2 years	Every 2 years

Table 73: Ecological specifications for the Olifants River: Olifants_ EWR8

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		Improve flows to ensure habitat diversity	MIRAI			
No. of indigenous fish species that should be	27 (including	In 20min electro sampling, must collect 4 small barb spp. and 2 Chiloglanis spp.	SASS5 Score	141-149 or better (220 = ref conditions)	Habitat integrity: Instream	Improve water quality and flows
recorded	spp.)	Should expect to collect	No. of Taxa	64 families expected	Habitat integrity: Riparian	Improve water quality and flows
		during electroshocking	ASPT	4.52-4.58 (7 = ref conditions)		

Considerations
Absence of flow depth and flow velocity dependent fish (e.g.: Labeo rosae and L. ruddi and Chiloglanis swierstrai). The later fish species prefers a sandy
substrate which was not present owing to the smothering of algae and siltation.
Absence of flow dependent aquatic macroinvertbrates and biota requiring good water quality (e.g. Psephenidae)

Monitoring	Frequency
Owing to the proximity of this site, full comprehensive surveys should be conducted	Annually
Chemical and in situ water quality should be monitored	Quarterly
Diatom samples should be taken	Annually
The WET testing should be conducted	Quarterly
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season

Riparian VEGRAI should be conducted	Every 5 years
The IHI should be conducted	Annually
Stringent management measures for this reach should be revised and updated within the existing catchment management plan	
It is recommended that the system be flushed (freshetts)	

Table 74: Ecological specifications for the Lower Spekboom River: Olifants_SPE1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Improve flows - need	
No. of indigenous fish species that should be	17 (including 1 eel	Should collect 20+ CPRE, 15+ LCYL and 20+ LMOL in 20min electro sampling.	SASS5 Score	189-195 or better (240 = ref conditions)	Habitat integrity: Instream	marginal vegetation as habitat. Lower nutrient inputs.
recorded	spp.)	In addition, get at least 3	No. of Taxa	64 families expected	Habitat integrity: Riparian	Protect riparian zone along
		smail bards	ASPT	5.58-5.63 (7 = ref conditions)		the reach

Considerations

Absence of habitat specific fish species (e.g.: Opsaridium peringueyi, Enteromius (Barbus) neefi, E. paludinosus. Although the habitat was there, it was exposed owing to the drought

Fish migration link from the Olifants system through the Steelpoort River, as the Spekboom River acts as a refugia.

Monitoring	Frequency
Due to the importance of the Spekboom River to the lower Steelpoort River, it is recommended that RHEM be conducted	Annually
Chemical, microbial and <i>in situ</i> water quality must be monitored	Quarterly
The site should be monitored to understand the health of the system and ensure the trajectory of change over	
time	
The instream monitoring should be in collaboration with the adjacent land use/s allocated water use license	
compliance monitoring program	

Table 75: Ecological specifications for the Upper Bylde River: Olifants_BLY1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions		
FR		AI	MIRAI		MIRAI			Lower erosion/silt from plantations. Lower
No. of indigenous fish species that should be recorded	6 spp. expected	In 20min sampling - collect 15+ CPRE, 15+ BMAR and 3 AURA.	SASS5 Score	201-207 or better (240 = ref conditions)	Habitat integrity: Instream	overgrazing in the catchment. Control alien invasives. Rehabilitate river banks <i>i.e.</i> erosion.		
		Must collect 2 spp. of	No. of Taxa	64 families expected	Habitat integrity: Riparian	Control alien invasives.		
		BNEE)	ASPT	5.93-5.98 (7 = ref conditions)		river banks.		

Considerations				
Absence of Enteromius (Barbus) motebensis owing to low water conditions and exposed marginal vegetation.				
Absence of fast flowing water, habitat and good water quality dependent aquatic macroinvertebrates (e.g. Pseph	enidae)			
High silt loads linked to upstream informal settlements and forestry which reduced the aquatic macroinvertebrate	assemblages			
Sensitive stream owing to the stream geomorphology and profile				
Monitoring	Frequency			
Due to the importance of the upper Blyde River in maintaining the good condition of the lower Blyde, it is recommended that RHEM be conducted	Annually			
Chemical, <i>in situ</i> water quality and microbiological parameters should be monitored Bi-annually				
ndex of habitat integrity (IHI) should be conducted Annually				
Land use activities should be managed to prevent degradation of the ecological health of the system and deterioration in water quality.				

Table 76: Ecological specifications for the Olifants River: Olifants_ EWR11

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI		Flushing to remove silt.	
No. of indigenous fish species that should be recorded	29 expected including 3 eel	To improve to C category must sample at least 25+ BMAR, 20+ CPRE and CPAR, 2 Labeo spp. in 20min electroshock sampling.	SASS5 Score	140-147 or better (220 = ref conditions)	Habitat integrity: Instream	Improve habitat i.e. marginal vegetation. Ensure sufficient SOOC available as habitat for the macro-invertebrates.
	spp.	Must collect at least 3 small barb spp.	No. of Taxa	67 families expected	Habitat integrity: Riparian	Manage harvesting of vegetation in the riparian
		Must get habitat sensitive spp. <i>i.e.</i> MMAC, MBRE and PCAT	ASPT	4.55-4.7 or better (7 = ref conditions)		zone. Lower trampling and erosion.

Considerations

Absence of Labeo rosae, Chiloglanis swierstrai, Micralestes acutidens owing to low flow velocities, high turbidity and the substrate being covered in fine silt (poor water quality).

Absence of fast flowing water, habitat and good water quality dependent aquatic macroinvertebrates (e.g. Perlidae and Hydrophysidae)

Fish migration link is fragmented due to weirs, impoundments and abstraction

Monitoring	Frequency
A full comprehensive monitoring programme for all drivers and response indicators to be implemented	
Chemical and in situ water quality should be monitored	Quarterly
Flow monitoring	
Diatom samples should be taken minimum	Annually
WET testing should be conducted quarterly until results are resolved	Quarterly

Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season
Riparian VEGRAI should be conducted	Every 5 years
IHI should be conducted	

Table 77: Ecological specifications for the Lower Blyde River: Olifants_EWR12

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FR		FRAI		MIRAI		Return flows from
No. of indigenous fish species that should be 27 spp. 2	In 20min electroshock should sample 30+ BMAR, 80+ CPRE, 30+ LCYL and 20+ MACU	SASS5 Score	202-207 or better (240 = ref conditions)	Habitat integrity: Instream	agriculture, encroachment into the riparian zone must be controlled.	
recorded	eel spp.	Must collect at least 2	No. of Taxa	71 expected		
		small barb spp. and habitat sensitive spp. e.g. PCAT, MBRE and MMAC	ASPT	5.94-5.97 or better (7 = ref conditions)	Habitat integrity: Riparian	Protect the riparian zone.

Considerations Absence of Opsaridium peringueyi, Petrocephalus wesselsi and Mesobola brevianalis linked to limited flow velocities, habitat modification and siltation.

Aquatic macroinvertebrate assemblage abundance lower than normal owing to changes in water quality and limited flow velocities. Low flow velocities and flow depth dependent aquatic macroinvertebrates absent (e.g. Trichorythidae, Prospistomatidae)

Monitoring	Frequency
A full comprehensive monitoring programme for all drivers and response indicators to be implemented	
Chemical and in situ water quality should be monitored quarterly	Quarterly
Flow monitoring	
Diatom samples should be taken minimum annually	Annually
WET testing should be conducted	Quarterly
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season
VEGRAI should be conducted every 5 years	Every 5 years

IHI should be conducted annually	Annually

Table 78: Ecological specifications for the Olifants River: Olifants_EWR13

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI		Vegetation degradation in	
No. of indigenous fish species that should be recorded 33 spp. including 3 eel	33 spp.	Should collect 30+ BMAR, 50+ CPRE, 20 CSWI, 20+ LCYL and 20+ LMOL in 20min electroshock effort.	SASS5 Score	174-179 or better (220 = ref conditions)	Habitat integrity: Instream	catchment, erosion, silt build-up, needs flushing.
	including 3 eel	3 eel small barbs, babitat	No. of Taxa	70 expected		
	spp.	related (marginal vegetation). Other spp. to collect include BIMB, GCAL, HVIT, PCAT, SINT	ASPT	5.58-5.64 or better (7 = ref conditions)	Habitat integrity: Riparian	the riparian zone, erosion of the banks.

Considerations
Absence of flow dependent fish species (e.g. Brycinus imberi, Labeo rosae, Chiloglanis swierstrai).
Absence of aquatic macro-invertebrates which are dependent on flow velocities (e.g. Perlidae, Psephenidae)
Low fish diversity a concern - flow and habitat related

Monitoring	Frequency
Chemical and in situ water quality should be monitored	Bi-annually
Diatom samples should be taken minimum	Every 2 years
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	annually during the wet season
Riparian VEGRAI should be conducted	Every 5 years
IHI should be conducted	Every 2 years

Table 79: Ecological specifications for the Olifants River: Olifants_EWR16

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	36 spp. including	In 20min shock effort should collect: BMAR (80+), CPAR and CSWI (20+ each), LMOL and LCYL (15 each) and at least 4 small barb spp.	SASS5 Score	174-179 or better (220 = ref conditions)	Habitat integrity: Instream	Flow needed for habitat diversity, need marginal vegetation. Flush algae.
	3 eel spp.	In addition should get:	No. of Taxa	64 expected		
		PCAT, MBRE, MAČU, GCAL and BIMB	ASPT	5.58-5.64 or better (7 = ref conditions)	Habitat integrity: Riparian	Marginal vegetation.

Considerations

Wide channel and very dry period therefore the absence of flow dependent fish species (e.g. Labeo congoro, Opsaridium peringueyi, Petrocephalus wesselsi).

Absence of aquatic macro-invertebrates which are dependent on flow velocities and those dependent on specific habitat availability (e.g. Perlidae, Psephenidae)

It is vital that this system within the Kruger National Park achieves the TEC status. In order to achieve this, the upper Olifants TECS need to be met and freshetts are implemented.

Monitoring	Frequency
A full comprehensive monitoring programme for all drivers and response indicators to be implemented	
Chemical and in situ water quality should be monitored	Quarterly
Flow monitoring at gauge B7H026	
Diatom samples should be conducted	Annually

WET testing should be conducted	Quarterly
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the wet and dry season
Riparian VEGRAI should be conducted	Every 5 years
IHI should be conducted	Annually
RQOs to be implemented and audited	

Table 80: Ecological specifications for the Letaba River: Letaba_EWR7

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Poor habitat due to flow regulation - must improve.	
No. of indigenous fish species that should be		With improved flow and habitat must collect 20+ BMAR and 15+ CPRE in 20min shock effort.	SASS5 Score	Score 110 - expect 154 - 160 (or better) for Category C	Habitat integrity: Instream habitat a veg	rity: Need to maintain rare SIC habitat and marginal vegetation.
recorded	30 spp. including 3 eel	As marginal vegetation	No. of Taxa	71 families expected	Habitat integrity: Riparian	Protect riparian zone and lower trampling and
	spp.	improve, must get at least 3 small barb spp., MACU, SINT and GCAL	ASPT	Score calculated at 5.3 - must be this or better.		erosion. No increase in alien vegetation. Maintain viable populations of Matumi, leadwood, appleleaf, torchwood.

Considerations				
Absence of flow dependent and deep water in habitats were absent (e.g. Labeobarbus marequensis, Labeo cylindricus, Oreochromis mossambicus and Hydrocynus vittatus).				
Absence of flow related aquatic invertebrates (e.g. Perlidae, Heptageniidae, Oligoneuridae)				
Fish migration link is fragmented due to high number of impoundments and weirs with limited to no fishways.				
System is severely under stressed and thus will have no positive impact on the Olifants system				
Monitoring Frequency				
Owing to the proximity of this site, full comprehensive surveys should be conducted.	Annually			
Chemical and <i>in situ</i> water quality should be monitored Quarterly				
Diatom sampling should be conducted Annually				
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the low flow conditions			

Riparian VEGRAI should be conducted every 5 years	Every 5 years
The IHI should be conducted annually	Annually
Stringent management measures as per KNP protocols for this reach should be adhered to.	

Table 81: Ecological specifications for the Letsitele River: Letaba_EWR2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Alien invasive control needed, lower removal of	
No. of indigenous fish species that should be recorded	No. of indigenous fish species that should be	In 20min shock effort must collect 20+ BMAR, 15+ CPRE.	SASS5 Score	86 recorded - currently in Class E, must improve to 115 or better.	Habitat integrity: Instream	riparian vegetation, stabilise river banks. Maintain the stones in current (SIC) and marginal vegetation
	expected	Must collect 3 small barb	No. of Taxa	Expect 80+		No increase in alien
		spp., MMAC. Habitat and flow to improve to get LCYL and LMOL back in the reach	ASPT	Recorded 5.38 - must improve to 5.5.	Habitat integrity: Riparian	vegetation. Maintain viable populations of Matumi, leadwood, appleleaf.

Considerations

High anthropogenic impacts and thus poor water quality resulted in the absence of Micralestes acutidens, Mesobola brevianalis, Marcusenius macrolepidotus.

Sensitive aquatic macroinverbrates absent owing to the poor water quality (e.g. Perlida, Ephemeriidae and Oligoneuridae)

Monitoring	Frequency
Owing to the proximity of this site, full comprehensive surveys should be conducted.	Annually
REMP protocols must be conducted annually	Annually
Organic and inorganic water quality and in situ water quality should be monitored	Quarterly
Diatom samples should be taken minimum	Annually
The WET testing should be conducted until results are resolved. As this river reach is an important water source for the locals, this is an important protocol.	Bi-annually

Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the low flow conditions
Riparian VEGRAI should be conducted	Every 5 years
The IHI should be conducted	Annually
Stringent management measures for this reach should be revised and updated within the existing catchment management plan	

Table 82: Ecological specifications for the Great Letaba River: Letaba_EWR1

Fish		Special conditions	Aquatic M	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI			Monitor erosion of forestry. Rehabilitate riparian zone	
No. of indigenous fish species that should be recorded 22 spp. expected including 2 eel spp.	Only 4 spp. collected - serious concern about this when comparing to the RQO set.	SASS5 Score	154-160 or better.	Habitat integrity: Instream	and remove alien vegetation. Maintain the stones in current (SIC) and marginal vegetation	
		No. of Taxa			Alien invasives and	
			ASPT	5.2-5.4 or better	Habitat integrity: Riparian	encroachment into the riparian zone.

Considerations
The presence of <i>Micropterus salmoides</i> is having an impact on the fish community.
Absence of aquatic macroinvertebrates which are dependent on flow velocities and good water quality (e.g. Perlidae, Prosopistomadiae)
Small stream thus sensitive to flow changes

Monitoring	Frequency
Owing to the proximity of this site, full comprehensive surveys should be conducted annually	Annually
Stringent management measures for this reach should be revised and updated within the existing catchment management plan	
Chemical and in situ water quality should be monitored	bi-annually
Diatom samples should be conducted	Annually
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the low flow conditions
Riparian VEGRAI should be conducted	Every 3 years
-------------------------------------	---------------
The IHI should be conducted	Annually

Table 83: Ecological specifications for the Broederstroom: Letaba_BRO1

Fish	Fish Special conditions		Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Flow needed for habitat	
No. of indigenous fish species that should be		With presence and		With B/C score of 180 or better.	Habitat integrity: Instream	diversity, need marginal vegetation.
recorded	Possibly 3 spp.	constant stocking of OMYK, no possibility of spp. to return.	Marginal vegetation.	43 families expected	Habitat integrity:	Marginal vegetation as
		ASPT	Should be 6 or more.	Riparian	habitat must be maintained.	

Considerations
Although the alien invasive fish species have decimated the indigenous fish species population at this site, the habitat availability is still present for
indigenous fish species to populate the site.
Small stream thus sensitive to flow changes

Monitoring	Frequency
Owing to the proximity of this site, full comprehensive surveys should be conducted.	Annually
Stringent management measures for this reach should be revised and updated within the existing catchment management plan	
In situ water quality should be monitored during the FRAI and MIRAI assessments	
Aquatic macroinvertebrates (MIRAI) should be monitored	Annually
The IHI should be conducted	Annually

Table 84: Ecological specifications for the Shingwidzi: Shingwidzi_SHI1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	26 spp.	Must improve flow and	SASS5 Score	94 - improve to 142- 146 (or better) (Expected 180)	Habitat integrity: Instream	Flow improvement required
recorded	2 eel	flow-dependant spp. into	No. of Taxa	64 families expected		Marginal vegetation as
	244.		ASPT	Currently 5.22 - improve to 5.4 or better (6)	Habitat integrity: Riparian	habitat must be maintained.

Considerations
Absence of larger fish species and flow dependent fish (e.g.: Labeobarbus marequensis, Enteromius (Barbus) paludinosus.
Absence of flow and good water quality dependent aquatic macroinvertebrates (e.g. Perlidae, Philopotamidae)
Owing to no flow at the site, limited fish migration would occur and which further impacts on the fish community at the site
Sensitive stream owing to the stream geomorphology and profile

Monitoring	Frequency
Owing to the proximity of this site, full comprehensive surveys should be conducted annually	Annually
Stringent management measures as per KNP protocols for this reach should be adhered to	
Chemical and in situ water quality should be monitored annually	Annually
Diatom samples should be taken minimum annually	Annually
Fish (FRAI) and macroinvertebrates (MIRAI) should be monitored	Annually during the low flow conditions

Riparian VEGRAI should be conducted.	Every 5 years
The IHI should be conducted.	Annually

4.3.2 Biological Sites within the Olifants, Letaba and Shingwedzi Catchment

Table 85: Ecologica	I specifications	for the Steenkools	pruit: Olifants	_STE1
---------------------	------------------	--------------------	-----------------	-------

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Improve flows	
No. of indigenous fish species that should be	6-7 BANO BNEE BPAU	PES is D,	SASS5 Score	Expected score of 60+	Habitat integrity: Instream	Need improved habitat for biota
recorded		collected in 20 min	No. of Taxa	20+ taxa expected at the site		Surrounding banks in a
	TSPA (+ 3 exotics)	Samping enor	ASPT	Expected value – 3.46 or higher	Habitat integrity: Riparian	fair to good condition - Maintain

Considerations

Improve flow velocities - ensure return flows of good quality

Monitoring	Frequency
Conduct a REMP	Annually
The instream monitoring should be in collaboration with the adjacent land use/s allocated water use licence compliance	
monitoring program.	

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Improve water quality-	
No. of indigenous fish species that should be		Current PES – C	SASS5 Score	Expected score should improve to 120+	Habitat integrity: Instream	concern is the high organic pollution and algal growth
recorded	Expected 6+	Should collect at least 5 species under normal	No. of Taxa	Expected – 25+		Riparian in fair condition -
	species	flows, concern about the presence of BPOL	ASPT	Expected – 4+	Habitat integrity: Riparian	need to remove alien vegetation and lower trampling of the river banks (cattle)

Table 86: Ecological specifications for the Bronkhorstspruit: Olifants_BRO1

Considerations
Must improve water quality – concern about high organic content related to sewage return flows.

Monitoring	Frequency
Fish and macroinvertebrates should be sampled	Annually towards the end
	of the wet season
Full chemical and <i>in situ</i> water quality is to be sampled	Quarterly
Diatom sampling	Quarterly

Table 87: Ecological specifications for the Timbavati: Olifants_TIM1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Need improved flow	
No. of indigenous fish species that should be recorded 20+ expected	20+	PES B Only 2 sampled – should	SASS5 Score	Expected to be 150+	Habitat integrity: Instream	velocities to improve water quality
	expected improved flow conditions.	No. of Taxa	Expected – 25+ taxa			
		to revive the system.	ASPT	Expected to be 4.9 or better	Habitat integrity: Riparian	In a good condition

Considerations Must look at water quality outside the Kruger National Park – must lower the high organic content, possibly from lack of water purification management.

Monitoring	Frequency
Fish and macroinvertebrates should be sampled	Annually towards the end
	of the wet season
In situ water quality is to be sampled	Quarterly

Table 88: Ecological specifications for the Steelpoort: OLI_GRO1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	Expected	PES – C Expected to sample 3-4	SASS5 Score	120+	Habitat integrity: Instream	Increased flows to remove sediment.
recorded	species	species, but MSAL a	No. of Taxa	30+ expected.		Bank stabilisation
			ASPT	5.0-5.1	Habitat integrity: Riparian	Removal of exotics

Considerations
Improved flow velocities to rejuvenate the in-stream habitat and improve water quality.

Monitoring	Frequency
This site must be continually monitored from a biological perspective in order to gain information for the RQO's	
Full REMP protocols should be conducted under better flow conditions during the wet season in order to establish a representative baseline for the Grootvlei catchment and its role in the upper Steelpoort catchment	
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Full chemical, microbial and in situ water quality is to be sampled	quarterly

Fish	-	Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			
No. of indigenous fish species that should be	_		SASS5 Score	180+	Habitat integrity: Instream	Increased flows to remove silt.
recorded Expect	Expected 6-8	and at least 30 small	No. of Taxa	Expected – 30+		Stabilise bank
	species	barbs in a 20min effort.	ASPT	6.4-6.6	Habitat integrity: Riparian	Address erosion in the catchment Concern on water quality

Table 89: Ecological specifications for the Langspruit: Olifants_LAN1

Considerations

All efforts must be made to ensure that alien fish do not occupy this system – concern of possible sources upstream. Must prevent infestation from sources downstream.

Monitoring	Frequency
This site must be continually monitored from a biological perspective in order to gain information for the RQO's	
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Full chemical, microbial and in situ water quality is to be sampled	quarterly

Table 90: Ecological specifications for the Masala: Olifants_MAS1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	Expected	PES – C Expected to collect 4-5	SASS5 Score	180 – 190 expected	Habitat integrity: Instream	Some flows to improve instream habitat
recorded	species	species, including 3 small Barbs	No. of Taxa	30+ expected		
		Daibb	ASPT	Expected 5.8 – 5.9	Habitat integrity: Riparian	Alien invasives eradication

Considerations
Must improve land-use practices upstream (erosion) and lower possible sewage return flows

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season
Metal accumulation within the fish species to ensure that it is safe for human consumption	
RQOs to be implemented	

Table 91: Ecological specifications for the Klip: Olifants_KLI1

Fish Special		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Sewage return flows, must rectify to lower algal growth.	
No. of indigenous fish species that should be recorded	Expected 4-5 species	eted PES – B Must collect 3 species and 20 specimens per 20min effort	SASS5 Score	100+	Habitat integrity: Instream	Increased flows to scour sediment buildup
			No. of Taxa	20 expected		Must lower trampling and
		Zomin chore	ASPT	Expected to be 6.6	Habitat integrity: Riparian	vegetation removal

onsiderations	
ust protect this river as a refuge of fish above the De Hoop Dam.	

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season
Continual management to protect the ecological status of this river reach, especially the management of the larger landscape due to the steepness of the site with the aim to avoid further erosion and trampling from local agricultural activities.	

Fish S		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be			SASS5 Score	Expected 200+	Habitat integrity: Instream	Must improve water quality
recorded	18	PFS - D	No. of Taxa	30+ expected		Increased flows to remove
	species expected	Must collect 10 – 12 species	ASPT	Expected 6-8-7	Habitat integrity: Riparian	silt. Monitor vegetation removal Lower trampling in the riparian zone

Table 92: Ecological specifications for the Dwars: Olifants_DWA1

Considerations
Must improve PES, as the Dwars River is an important refuge area for biota from the Steelpoort River.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river reach, due to the river being an important refugia for the above mentioned fish species and planned upstream mining activities.	

Table 93: Ecological specifications for the Steenkoolspruit: Olifants_STE2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			Flow increase needed -
No. of indigenous fish species that should be recorded	3-4 expected	PES – C Must collect 2 species (10+ each) in sampling	SASS5 Score	Expected under good conditions to be 100+	Habitat integrity: Instream	siltation and organic pollution a concern
			No. of Taxa	Expect 25 families		Lower erosion and
		enon	ASPT	Expected – 4.5 – 4.6	Habitat integrity: Riparian	trampling of surrounding land

Considerations	
Refuge area in upper reaches of the system.	

Monitoring	Frequency
Assess compliance to the conditions of the water use license criteria from surrounding land uses (current mining	
activities to the west of the sample site)	
The site should be monitored to understand the health of the system and ensure the trajectory of change over time	
The instream monitoring should be in collaboration with the adjacent land use/s allocated water use license compliance	
monitoring program.	

Table 94: Ecological specifications for the Dwars-in-die-wegspruit: Olifants_DWA2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			Flow increase needed -
No. of indigenous fish species that should be recorded	3-4 expected	PES – C Must collect 2 species (10+ each) in sampling	SASS5 Score	Expected under good conditions to be 100+	Habitat integrity: Instream	siltation and organic pollution a concern
			No. of Taxa	Expect 25 families		Lower erosion and
		enon	ASPT	Expected – 4.5 – 4.6	Habitat integrity: Riparian	trampling of surrounding land

Considerations	
Refuge area in upper reaches of the system.	

Monitoring	Frequency
As the site was characterised by a deep pool, it hampered sampling effort and thus fish and aquatic macroinvertebrates could not be sampled. It is thus advised that this site is not surveyed owing to the poor site characteristics.	
Chemical and <i>in situ</i> water quality is to be sampled	Quarterly.
The instream monitoring should be in collaboration with the adjacent land use/s allocated water use license compliance monitoring program (i.e. current mining activities to the west of the sample site).	

Fish	1	Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			
No. of indigenous fish species that should be			SASS5 Score	Expected under good conditions to be 100+	Habitat integrity: Instream	Monitor sewage pollution Increased flows needed
recorded	3-4		No. of Taxa	Expect 25 families		Erosion, over grazing and
	expected	FES - D	ASPT	Expected – 4.5 – 4.6	Habitat integrity: Riparian	trampling must be managed. Removal of alien invasive trees.

Table 95: Ecological specifications for the Steenkoolspruit: Olifants_STE3

Considerations	
Refuge area in upper reaches of the system.	

Monitoring	Frequency
A different site should be identified to sample fish and macroinvertebrates.	
Chemical, bactrial and in situ water quality is to be sampled	Quarterly
The instream monitoring should be in collaboration with the adjacent land use/s allocated water use license compliance monitoring program (i.e. current and proposed future mining and power generation activities in the area).	

Table 96: Ecological specifications for the Olifants: Olifants_OLI1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Water Quality improvement	
No. of indigenous fish species that should be recorded	11 – 13 spasies	PES – C Must collect 7-8 species	SASS5 Score	120+ expected Habitat integrity: Manage sewage scour sedi	Manage sewage pollution Increased flows needed to scour sediments	
	expected	under improved WQ	No. of Taxa	50+ expected	50+ expected	Alian invasivo control must
		ASPT 5.8-6 expecte	5.8-6 expected	Riparian	be done	

Considerations
Important habitat for biota and vegetation above Loskop Dam.
Nutrient management must be considered in Olifants River and upstream into the Klipspruit

Monitoring	Frequency
Fish and macroinvertebrates should be sampled	Bi-annually
Full chemical and in situ water quality is to be sampled	Quarterly
Diatom sampling should be undertaken	Quarterly
Heavy metals arising from the Klipspruit must be monitored.	Quarterly

Table 97: Ecological specifications for the Klein-Olifants: Olifantsa_K_OLI1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Improve water quality	
No. of indigenous fish species that should be recorded	5	PES – D Must collect 2 species	SASS5 Score	140+	Habitat integrity: Instream	Lower sewerage pollution Manage erosion and siltation
	expected	Must collect 3 species	No. of Taxa	30+ expected	Stabilise banks lower	
			ASPT	4.9 - 5	Habitat integrity: Riparian	trampling and erosion

Considerations

Important section of the upper system with regard to biodiversity protection

Monitoring	Frequency
As site Olifants_K_OLI1 and Olifants_K_OLI2 are in close proximity to each other, and site Olifants_K_OLI2 is located in the upper reaches of Middleburg dam, it is recommended that a new site be selected on the Klein-Olifants to replace the two sites (Olifants_K_OLI1 and Olifants_K_OLI2) and provide a combined overview of upstream impacts from Klein- Olifants, Coetzerspruit, Bosmanspruit, Rietkuilsprit and Woes-Alleenspruit. This new site is proposed to be located at site co-ordinates -25.836943, 29.608087.	
Fish and macroinvertebrates should be sampled	Bi-annually
Full chemical, bacterial and in situ water quality is to be sampled	Quarterly
Diatom sampling should be undertaken	Quarterly

Table 98: Ecological specifications for the Klein-Olifants: Olifants_K_OLI2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			Improve WQ
No. of indigenous fish species that should be	8-10	PES – C	SASS5 Score	120+	Habitat integrity: Instream	Lower sewerage pollution Increased flows for scouring of sediments
recorded	expected	Must collect 4-5 species during sampling efforts	No. of Taxa	22+ families expected		Manage erosion of river
			ASPT	4.8+	Riparian	banks and the catchment

Considerations

Refugia and biodiversity importance above the impoundments in the system.

Monitoring	Frequency
As site Olifants_K_OLI1 and Olifants_K_OLI2 are in close proximity to each other, and site Olifants_K_OLI2 is located in the upper reaches of Middleburg dam, it is recommended that a new site be selected on the Klein-Olifants to replace the two sites (Olifants_K_OLI1 and Olifants_K_OLI2) and provide a combined overview of upstream impacts from Klein- Olifants, Coetzerspruit, Bosmanspruit, Rietkuilsprit and Woes-Alleenspruit. This new site is proposed to be located at site co-ordinates -25.836943, 29.608087.	
Fish and macroinvertebrates should be sampled	Bi-annually
Full chemical and <i>in situ</i> water quality is to be sampled	Quarterly
Diatom sampling should be undertaken	Quarterly

Table 99: Ecological specifications for the Elands: Olifants_ELA2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI				MIRAI		Must improve flows
No. of indigenous fish species that should be	Expected -	PES – C	SASS5 Score	Expect 160	Habitat integrity: Instream	Need flushing of silt Must monitor and lower sewerage in the river
recorded	9 species	Must collect 4-5 species	No. of Taxa	Expected – 30 families		Some riparian rehabilitation
			ASPT	Expect 6 – 6.2	Habitat integrity: Riparian	needed - aliens and bank stabilisation

Considerations

Important sector above the impoundment for biodiversity protection

Monitoring	Frequency
Full chemical and in situ water quality is to be sampled	Quarterly
Diatom sampling should be undertaken	Quarterly

Table 100: Ecological specifications for the Groot Dwars: Olifants_G_DWA1

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	Expected		SASS5 Score	160	Habitat integrity: Instream	Some siltation – control impacts in the catchment
	- 2 Mus	PES – C Must collect both species	No. of Taxa 30+ expected	In fair c	In fair condition – must	
	species		ASPT	6.0 expectd	Habitat integrity: Riparian	monitor removal of vegetation and trampling of river banks

Considerations
Important sector above the Der Brochen impoundment.

Monitoring	Frequency
REMP protocols to be conducted	
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season
Full chemical and in situ water quality is to be sampled	Quarterly

Table 101: Ecological specifications for the Steelpoort: Olifants_STEP1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	Expected	PES – D	120+	Habitat integrity: Instream	Some solid waste dumping a concern	
recorded	18 species	Must sample 9 – 11 species	No. of Taxa	Expected 25+	Riparian vegetation modified.	
			ASPT	Expected 5.8 - 6	Habitat integrity: Riparian	Bank eroded – trampling and vehicles

Considerations Important sector of the Steelpoort below De Hoop Dam

Monitoring	Frequency
REMP protocols to be conducted	
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season and dry season.
Full chemical, microbial and in situ water quality is to be sampled, taken careful note of temperature fluctuations.	Quarterly
Turbidity should be monitored (owing to the silt loads from the dam)	

Table 102: Ecological specifications for the Mohlapitse: Olifants_MOH1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	20	PES – B	SASS5 Score	180+	Habitat integrity: Instream	Some solid waste
recorded	species expected	Must collect 15+ species	No. of Taxa	30+ families expected		Stabilisation of road crossing
			ASPT	Expected – 7+	Habitat Integrity: Riparian	to lower erosion risks

Considerations

Critical refuge area of biota from the Olifants River - with some rare species present - AKAT

Monitoring	Frequency
Full REMP protocol	
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season and dry season
In situ water quality is to be sampled	Quarterly

Table 103: Ecological specifications for the Mohlapitse: Olifants_MOH2

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be	SASS5 Score 190+ Habitat integrity: Instream	Habitat integrity: Instream	Manage soil erosion in the catchment			
recorded	– 22 species	In good conditions should collect 14 species	No. of Taxa	30+ families expected		Control alien invasive
			ASPT	Expected – 6.5+	Habitat integrity: Riparian	Manage riparian destruction, trampling and erosion

Considerations Important refuge area for biota from the Olifants River.

Monitoring	Frequency
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Full chemical, microbial and in situ water quality is to be sampled (based on the observed water having a cloudy blue colour at the time of the survey).	Quarterly

Table 104: Ecological specifications for the Motse: Olifants_MOT1

Fish		Special conditions	Aquatic M	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI			Manage sewage return-flows in the upstream sections.	
No. of indigenous fish species that should be			SASS5 Score		Habitat integrity: Instream	Monitor water quality from mining areas. Ensure illegal abstractions is halted.
recorded			No. of Taxa		Habitat integrity: Riparian	Must get communities to improve land-use practices, high erosion and siltation a problem.

Considerations
System is considered very seasonal/ephemeral – therefore limited habitat for fish and macroinvertebrates. Monitoring and management must be
towards water quality and habitat integrity

Monitoring	Frequency
Full chemical, microbial and in situ water quality is to be sampled	Quarterly

Table 105: Ecological specifications for the Olifants: Olfants_OLI2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI		Must increase flow velocities	
No. of indigenous fish species that should be recorded	Expect	PES B Must collect flow Expect dependent and habitat 20+ dependent species – e.g. species HVIT, LCON, LMOL,	SASS5 Score	Expected 200+	Habitat integrity: Instream	to be able to get to PES B, improve water quality of water in the catchment.
	species		No. of Taxa	45+ expected		Marginal vegetation as
		BMAR, CSWI, PCAT, MMAR ASP1	ASPT	Expected 6.8	Habitat integrity: Riparian	habitat must be maintained.

Considerations

This site in the KNP is expected to have a PES B. currently flows and impacts from the catchment is having severe detrimental impacts on the system and to rectify, the upstream recommendations as part of this report is critical and must be implemented.

Monitoring	Frequency
Aquatic macroinvertebrates should be sampled	Annually
Fish should be sampled	Every three years or should any changes or other indices are detected
Full chemical and in situ water quality is to be sampled	Annually
Diatom sampling should be undertaken	Annually

Table 106: Ecological specifications for the Letaba: Letaba_LET2

Fish	l	Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	Expected 30, including 3 eel species (low probability)	ected 30, iding 3 pecies low ability) PES C Expect do sample 12-15 species	SASS5 Score	Expected – 160+	Habitat integrity: Instream	Increased flows needed. Monitor WQ outside KNP
			No. of Taxa	30+ expected	Habitat integrity: Riparian	Marginal vegetation as habitat must be maintained.
			ASPT	6.6 – 6.8		

Considerations

As part of KNP mandate it is important to protect biodiversity of the system. Must improve water quality and quantity in the Letaba River.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical and in situ water quality should be conducted	Bi-annual
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season

Table 107: Ecological specifications for the Tsende: Letaba_TSE1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	Expect 4- 6 species	ect 4- ecies Expected to collect 4 species per survey	SASS5 Score	Expected – 150+	Habitat integrity: Instream	Maintain good flows
			No. of Taxa	25+		Marginal vogetation as
		AS	ASPT	6+	Habitat integrity: Riparian	habitat must be maintained.

Considerations

Important refugia as part of the Letaba River – this river in the park therefore critical as part of the biodiversity proctection.

Monitoring	Frequency
In situ water quality should be conducted with yearly chemical and microbial analysis – to determine any possible	
impacts from tourist facilities upstream.	
Aquatic macroinvertebrates should be sampled	Annually towards the end of
	the dry season.
Continual management to protect the ecological status of this river reach, due to the river being an important refugia for	
the above mentioned fish species and planned upstream mining activities.	

Table 108: Ecological specifications for the Letaba: Letaba_LET1

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI			MIRAI		Must increase flows to	
No. of indigenous fish species that should be recorded	20+	20+ species expected species expected species expected species expected species specie	SASS5 Score	180+	Habitat integrity: Instream	biodiversity within the KNP. Must improve water quality from the catchment.
	expected		No. of Taxa	35 expected	Habitat integrity: Riparian	Marginal vegetation as habitat must be maintained.
		зэрр. 200М, ЛИП –	ASPT	6.7+		

Considerations

This is an important system with regard to the mandate of the KNP to protect biodiversity.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Bi-annual
Fish and macroinvertebrates should be sampled	Annually during the wet season.
Continual management to protect the ecological status of this river reach, due to the river being an important refugia – cumulative impacts from the Letsitele, Nsama, Middle, Klein and Groot Letaba and to a smaller extent the Nwanedzi and Molototsi rivers.	

Table 109: Ecological specifications for the Klein Letaba: Letaba_K_LET1

Fish	1	Special conditions	Aquatic M	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI			Flow must improve to get the PES B as required.	
No. of indigenous fish species that should be recorded	Expect 10- 15 species in wet season conditions	Expect 10- 15 species in wet season conditions Expect 10- 15 species Must collect 8 species in the wet season.	SASS5 Score	Expect 150+ in PES B	Habitat integrity: Instream	especially return flows. Outside the KNP the erosion is a concern impacting on habitat availability – siltation.
			No. of Taxa	20+ expected.	Habitat integrity: Riparian	Marginal vegetation as habitat must be maintained.
			ASPT	Expected to be 6.5+		

Considerations This river is an important component of the Letaba River system and flow quantity and water quality is key in maintaining the habitat for biodiversity in the KNP.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Bi-annual
Aquatic macroinvertebrates and diatoms should be sampled. However, communication with the KNP game ranger must	Annually during the wet
first be conducted to confirm there is flow at the site for the benefit of the sampling event.	season
Continual management to protect the ecological status of this river reach, due to upstream impacts on the Letaba River	
system.	

Table 110: Ecological specifications for the Groot Letaba: Letaba_G_LET1

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI			MIRAI		Water quality and quantity	
No. of indigenous fish species that should be	Expected	PESC	SASS5 Score140+Habitat integrity: Instream	Habitat integrity: Instream	must improve – PES B downstream needed.	
recorded	25+	Must sample 15+ species under natural summer	No. of Taxa	Expect 40+	Habitat integrity: Riparian	Riparian vegetation removal a concern – erosion and siltation impact on instream habitat.
	species.	flows.	ASPT	6.4+		

Considerations

This is the site just west of the KNP border and is considered an important sector of the river with regard to water input into the park. It is an important refugia for biota and part of the biodiversity conservation for the lower section of the Letaba River system – at the confluence with the Klein Letaba River.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually during the wet season or when there is flow at the site.
Continual management to protect the ecological status of this river reach, due to the upstream impacts on the system to ensure good quality water into the KNP and Mozambique.	

Table 111: Ecological specifications for the Nsama: Letaba_NSA1

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	Expected		SASS5 Score	160+	Habitat integrity: Instream	Water quality and return flows must be improved.
	- 15	15 PES B No	No. of Taxa	40+ families expected	Habitat integrity: Riparian	Erosion and trampling.
			ASPT	6.8		Dumping of refuse – all types

Considerations

An important tributary of the Klein Letaba River – needs to improve flows and water quality for the system downstream.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality	Annually during the wet
	season
Fish and macroinvertebrates should be sampled	Annually towards the end of
	the wet season.
Continual management to protect the ecological status – important tributary of the Klein Letaba River – will reflect the	
impacts from the catchment and therefore loads on the Letaba River system.	

Table 112: Ecological specifications for the Klein Letaba: Letaba_K_LET2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Water quality and quantity to	
No. of indigenous fish species that should be recorded	20+	PES D	SASS5 Score	140+	Habitat integrity: be addressed.	
	species	species under improved	No. of Taxa	30+ expected	Removal of natural vegetation.	
		flow conditions	ASPT	5.8-6	Habitat integrity: Riparian	Alien invasive encroachment. Erosion and trampling.

Considerations	
An important sector of the river in the middle reaches of the system.	

Monitoring	Frequency
REMP protocols should be conducted	Annually
Chemical, microbial and in situ water quality	Annually during the wet season and prior to the dry season
Fish and macroinvertebrates should be sampled.	Annually towards the end of the wet season
Continual management to protect the ecological status of this river reach.	

Table 113: Ecological specifications for the Groot Letaba: Letaba_G_LET2

Fish Special conditions		Aquatic Macroinvertebrates		Habitat Integrity	Special conditions	
FRAI		MIRAI			Erosion and siltation.	
No. of indigenous fish species that should be recorded			SASS5 Score	140+ Habitat integri	Habitat integrity: Instream	Need increased sustained flows to flush the system and improve PES
	18+ species	es Expected to collect as least 14 species -	No. of Taxa	30+ families expected	Habitat integrity: Riparian	Riparian destruction and alien invasives a concern. Erosion and trampling – resulting the siltation.
			ASPT	5.8-6+		

Considerations	
Because of the fragmented nature of the system, more sustained flows in needed to improve the overall condition of the river.	

Monitoring	Frequency
Monitoring only to be conducted at site LET13. A biological survey is not necessary at site LET12 and LET13.	

Table 114: Ecological specifications for the Groot Letaba: Letaba_G_LET3

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI			Erosion and siltation.	
No. of indigenous fish species that should be recorded			SASS5 Score	140+ Habitat integrity: Ne flow		Need increased sustained flows to flush the system and improve PES
	18+ Expected to c species least 14 sp	ESD Expected to collect as	No. of Taxa	30+ families expected	Habitat integrity: Riparian	Riparian destruction and alien invasives a concern. Erosion and trampling – resulting the siltation.
			ASPT	5.8-6+		

Considerations
Because of the fragmented nature of the system, more sustained flows in needed to improve the overall condition of the river.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually towards the end of the dry season.
Continual management to protect the ecological status of this river – severe impacts related to fragmentation, pollution and abstraction.	

Table 115: Ecological specifications for the Groot Letaba: Letaba_G_LET4

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions
FRAI		MIRAI			Improve $WO = concern about$	
No. of indigenous fish species that should be recorded	16+	PES D Must collect 10+ species	SASS5 Score	175+ expected	Habitat integrity: Instream Instream Improve flow regime condition	sewage pollution. Improve flow regime conditions.
	expected	pected flow conditions. No. of Taxa 4	40+ expected		Concern about some riparian	
			ASPT	6.5-6.8	Habitat integrity: Riparian	removal and alien invasive infestations – control latter.

Considerations Must improve PES. Important sector of the river below Lake Tzaneen.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Bi-annually towards the end of the dry and wet season
Continual management to protect/improve the ecological status of this river reach. Highly impacted and must improve EC to ensure good water quality downstream.	

Table 116: Ecological specifications for the Broederstroom: Letaba_BRO2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	6+ species expected	PES C Concern with the MSAL presence – indigenous fish under serious threat.	SASS5 Score	210+	Habitat integrity: Instream	Lower silt inputs from plantations
			No. of Taxa	40+ expected	Habitat integrity: Riparian	Alien vegetation eradication. Restore riparian zone with removal of plantations near river edge.
			ASPT	6.5-6.8+		

Considerations
This system is an important tributary of the Groot Letaba River – can contribute good quality and quantity water to the system – however the impacts of
forestry are negative in this regard.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical and in situ water quality should be conducted	Bi-annual
Fish and macroinvertebrates should be sampled	Annually towards the end of the dry season.
Continual management to protect the ecological status of this river.	
Table 117: Ecological specifications for the Politsi: Letaba_POL1

Fish Special condit		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			
No. of indigenous fish species that should be recorded	8-10 expected	PES C 0 Must collect at least 6 species under improved	SASS5 Score	180+	Habitat integrity: Instream	Improve WQ and velocity. Lower silt inputs from forestry.
			No. of Taxa	35+		Remove forestry on river banks.
		conditions	ASPT	6.8-7	Habitat integrity: Riparian	Rehabilitate the river banks and alien invasive vegetation.

Considerations
This river is an important biota refuge and water supply to the Groot Letaba River.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Bi-annual
Fish and macroinvertebrates should be sampled	Annually towards the end of the dry season
Continual management to protect the ecological status of this river.	

Table 118: Ecological specifications for the Shisha: Shingwedzi_SHIS1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI				MIRAI		
No. of indigenous fish species that should be recorded	Mostly	Not sure if fish can be	SASS5 Score			
	floodplain	oodplain monitored.	No. of Taxa			
			ASPT			

Considerations

System very important supply of water to the Mphongolo River (Shingwedzi River system)

Monitoring	Frequency
REMP protocols should be conducted	Annual
In situ water quality should be conducted	Annually in the wet season
Fish and macroinvertebrates should be sampled	Every 3 years towards the end of the wet season
Continual management to protect the ecological status of this river.	

Table 119: Ecological specifications for the Mphongolo: Shingwedzi_MPH2

Fish Special conditions		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	10-12 expected	10-12 expected PES A Must monitor in wet season, as system is seasonal – 4 – 6 species	SASS5 Score	120+	Habitat integrity: Instream	Concern about sewage pollution
			No. of Taxa	25+		
		expected	ASPT	5.5+		

Considerations

This is an important tributary of the Shingwedzi River – critical water supply and biodiversity refuge.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Annually during the wet season
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river reach – impacts from outside the KNP must be monitored.	

Table 120: Ecological specifications for the Mphongolo: Shingwedzi_MPH1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			
No. of indigenous fish species that should be recorded	10-12 species expected	10-12 PES D pecies 4-6 species in good flow spected conditions	SASS5 Score	120+	Habitat integrity: Instream	Must improve PES, as lower down PES must be A (Shi 3). Sewage pollution outside KNP a problem.
			No. of Taxa	25+		
			ASPT	5.5+		

Considerations

This is an important tributary of the Shingwedzi River – critical water supply and biodiversity refuge.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Annually during the wet season
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river – severe impacts upstream.	

Table 121: Ecological specifications for the Phugwane: Shingwedzi_PHU1

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI		MIRAI				
No. of indigenous fish species that should be recorded	24 species expected	PES C Expected to collect 12 species under improved flow conditions	SASS5 Score	120+	Habitat integrity: Instream	Increased flows Water quality – sewage in the system a concern (source outside KNP)
			No. of Taxa	25+		
			ASPT	3.9-4		

Considerations This is an important tributary of the Shingwedzi River.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, microbial and in situ water quality should be conducted	Annually during the wet season
Fish, diatoms and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river – impacts from outside KNP have negative results in lower Shingwedzi River.	

Table 122: Ecological specifications for the Shingwedzi: Shingwidzi_SHI2

Fish		Special conditions	Aquatic Macroinvertebrates		Habitat Integrity	Special conditions
FRAI			MIRAI			Water quality and sewage must
No. of indigenous fish species that should be recorded	27	27 Expected to sample 12 – expected 15 species under improved flow conditions	SASS5 Score	120+	Habitat integrity: Instream	improve. Rehabilitate old mines upstream – AMD into system.
	expected		No. of Taxa	20+ expected	Habitat integrity: Riparian	Siltation due to poor land-use outside KNP
			ASPT	4 expected		

Considerations

The Shingwedzi, although seasonal, a critical water resource in the north of the country.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical, diatom, microbial and in situ water quality should be conducted	Annually during the wet season
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river system – impacts carried through the KNP.	

Table 123: Ecological specifications for the Shingwedzi: Shingwidzi_SHI3

Fish		Special conditions	Aquatic Ma	acroinvertebrates	Habitat Integrity	Special conditions		
	FR	AI		MIRAI				
No. of indigenous fish species that should be	28	PES B Expect to collect 18-20	SASS5 Score	120+	Habitat integrity: Instream	Low flows limit habitat – improved flow will increase diversity.		
recorded	expected	species under improved	No. of Taxa	50 expected				
			ASPT	4.4-4.6				

Considerations
The Shingwedzi, although seasonal, a critical water resource in the north of the country.

Monitoring	Frequency
REMP protocols should be conducted	Annual
Chemical and in situ water quality should be conducted	Quarterly
Fish and macroinvertebrates should be sampled	Annually towards the end of the wet season.
Continual management to protect the ecological status of this river.	

5 GROUNDWATER SPECIFICATIONS

The assessment of the groundwater reserve in the Study Area is based on reviews of investigations and reviews done by independent research teams in the period between 2001 and 2013. In all cases the Olifants Riverand Letaba River Catchments were not addressed as one water management area, therefore, this assessment will focus on submitting a combined assessment of the groundwater reserve. The Shingwedzi River Catchment (TC B90) has not been studied in terms of any resource directed measures (RDM) assessment yet. The Tertiary Catchment (TC) B90 was therefore addressed on a desktop level assessment instead (as with the surface component).

The groundwater quality and quantity indices for the groundwater Reserve are included in Table 124 below. The table contains the basic dataset for the DWS GRDM Template, but is extended to include a groundwater quality index, a groundwater quality status/trend narrative, and a groundwater quantity directive/recommendation.

The groundwater Quality Index has been structured from an assessment of the quaternary groundwater quality National Groundwater Archive dataset, but unfortunately dates back to time when the climate in the study area was different, as well as the anthropogenic developments. It is therefore considered to be slightly more conservative (showing a fresher quality signature).

The groundwater Quality Status/trend narrative describes the time series component of the quaternary catchments groundwater quality. Of particular importance in this assessment is the long-term rising trends in TDS, NO₃–N, SO₄, and Mg for example. In this case the groundwater quality reserve should specify at least a Marginal water quality (DWAF *et al*, 1998), and further deterioration should not be allowed without very strict/implementable mitigation measures.

The groundwater Quantity Directive/Recommendation lists five levels of potential stresses on the groundwater component in the quaternary catchments, each with a specific guideline to address further groundwater allocations, i.e.

- Minimum Stress Index Level (Groundwater investigation limited to local water balance estimation and hydrocensus);
- Medium Stress Index Level (Groundwater investigation more detail in terms of hydrogeological conditions, hydrocensus, limited monitoring requirements, mapping of other abstractions and water balance);
- High Stress Index Level (High-level groundwater investigation, monitoring boreholes, specific license conditions, aquifer characterisation, recharge estimates, regional potential impacts and piezometric mapping);
- QC water balance assessment required (Current water balances for quaternary catchment does not match and Allocable groundwater is < 1 MCM/a)); and
- Groundwater allocation (or use) significantly over-allocated, means that use is potentially impacting on the Groundwater Component of the Reserve.

Ecological specifications of the groundwater resources are directly linked to these indexes, namely in the case of the groundwater component status of the reserve in a significantly overallocated quaternary catchment, the water use is already impacting on the total reserve of the quaternary catchment and further allocations should be critically considered.

Table 124: Groundwater quantity and quality indices per quaternary catchment and Reserve

		INPUT	OUTPUT											
Catch- ment	Area (km²)	Rech to Aqf (WSM & SRK)	Gw Bf (WSM & SRK)	BHN Reserve (Mm3/a)	Total Gwater Use (Mm3/a)	Total Gw Reserve (Mm3/a)	SI = Gw Use / Aqf Rech	(Mm3/a)	Quantity Index (GRDM)	Quality Index (Research Reports)	Allocable Gwater (Mm3/a)	Quantity Directive/ Recommendation i.t.o. New allocations.	Gw Quality Status/Trend i.t.o long-term sustainability	Reserve (% of Recharge)
		Ave	Ave		Calc'd		WSM2013	Exigo ₂₀₀₉	Ranked WSM	Ranked	Cal'd			
B11A	945	11.99	10.29	0.10	0.57	12.3	0.04	0.21	A-Unmodified	Good (Class One, 1)	2.98	Minimum Stress Index Level	-	79.61
B11B	435	5.66	4.54	0.12	0.20	5.49	0.03	0.39	A-Unmodified	Good (Class One, 1)	1.32	Moderately Stress Index Level	-	80.26
B11C	385	5.65	4.00	0.04	4.37	4.89	0.77	0.21	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	-	85.64
B11D	551	9.23	5.40	0.18	2.34	6.68	0.31	0.33	B-Largely Natural	Marginal (Class Two, 2)	0.00	Moderately Stress Index Level		87.21
B11E	467	6.53	4.56	0.11	3.53	5.47	0.52	0.48	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	-	80.44
B11F	428	5.44	4.32	0.08	0.37	5.15	0.06	0.89	B-Largely Natural	Marginal (Class Two, 2)	1.08	Moderately Stress Index Level		79.97
B11G	368	4.58	3.73	0.07	0.10	4.49	0.02	0.41	A-Unmodified	Marginal (Class Two, 2)	1.17	Moderately Stress Index Level	Largely acceptable levels of TDS, NO ₃ -N and	70.62
BIIN B111	240	3.40	5 30	0.04	1.88	1.88	0.12	0.23	B-Largely Natural	Marginal (Class Two, 2)	0.41	Highly stressed index Level	SO _{4.} Local impacts on water quality due to agriculture	79.03
B115 B11K	378	6.50	7.33	0.43	0.22	7.62	0.00	0.13	B-Largely Natural	Marginal (Class Two, 2)	2 25	Minimum Stress Index Level	practices and livestock farming.	77 44
B11L	242	4.77	4.78	0.01	0.06	4.96	0.02	0.06	A-Unmodified	Marginal (Class Two, 2)	1.21	Moderately Stress Index Level		81.98
B12A	407	5.08	3.70	0.18	0.16	4.49	0.03	0.21	A-Unmodified	Good (Class One, 1)	0.26	Highly stressed Index Level		95.13
B12B	659	8.70	6.48	0.08	3.84	7.89	0.45	0.31	B-Largely Natural	Marginal (Class Two, 2)	0.00	Highly stressed Index Level		91.53
B12C	529	5.89	5.39	0.04	0.21	6.58	0.03	0.23	A-Unmodified	Marginal (Class Two, 2)	0.70	Highly stressed Index Level]	91.39
B12D	362	4.63	3.91	0.98	0.24	5.7	0.05	0.92	E – Seriously modified	Marginal (Class Two, 2)	0.00	QC water balance assessment required.		110.47
B12E	436	10.06	8.94	0.04	0.45	9.19	0.04	0.05	A-Unmodified	Marginal (Class Two, 2)	2.21	Minimum Stress Index Level		79.98
B20A	574	12.35	7.00	0.48	20.57	9.84	2.00	1.00	F-Critically modified	Marginal (Class Two, 2)	0.00	Groundwater allocation significant over-allocated	In terms of TDS, nitrates and sulphates, water	95.91
B20B	321	5.71	3.85	0.38	58.03	4.72	10.02	1.00	F-Critically modified	Marginal (Class Two, 2)	0.00	Groundwater allocation significant over-allocated	quality still within acceptable concentrations.	82.52
B20C	364	5.52	4.42	0.03	0.91	4.16	0.14	0.12	B-Largely Natural	Marginal (Class Two, 2)	1.59	Moderately Stress Index Level	-	63.71
B20D	480	9.27	5.70	0.26	1.43	5.56	0.17	0.11	B-Largely Natural	Marginal (Class Two, 2)	1.70	Moderately Stress Index Level	-	65.26
B20E	620	9.25	7.51	0.37	3.58	7.64	0.36	0.55	C-Moderately modified	Marginal (Class Two, 2)	0.00	Moderately Stress Index Level	Imported by local activities, waste disposal sites	77.88
B20F	504	9.25	6.00	0.05	0.80	5.76	0.09	0.07	B-Largely Natural	Marginal (Class Two, 2)	2.62	Minimum Stress Index Level	and agricultural practises (B20A and -B)	63.65
B20G	522	11.23	9.80	0.30	1.87	10.58	0.14	0.12	B-Largely Natural	Marginal (Class Two, 2)	1.04	Minimum Stress Index Level		80.46
B20H	563	9.63	10.41	0.36	1.77	11.39	0.13	0.36	B-Largely Natural	Marginal (Class Two, 2)	0.87	Minimum Stress Index Level	-	83.14
B20J	407	8.58	7.69	0.05	1.09	8.08	0.11	0.13	B-Largely Natural	Marginal (Class Two, 2)	1.14	Minimum Stress Index Level		80.56
B31A	387	5.26	3.46	0.04	4.81	3.81	0.79	0.55	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	Dissolved solids within acceptable limits	62.56
B31B	385	7.48	3.05	0.19	1.22	3.64	0.22	0.29	B-Largely Natural	Marginal (Class Two, 2)	0.71	Minimum Otress Index Level	Dissolved solids within acceptable limits	65.47
B31C	557	7.19	2.51	0.00	1.06	2.75	0.16	0.07	B-Largely Natural	Marginal (Class Two, 2)	1.59	Minimum Stress Index Level	Dissolved solids within acceptable limits	53.50
B31E	1382	28.04	0.00	0.42	9.24	0.14	1 11	0.32	C-Moderately modified	Good (Class One 1)	0.00	Highly stressed Index Level	Local nitrate hot spots	1.68
B31E	638	5.89	0.00	0.14	2.31	0.14	0.63	0.03	C-Moderately modified	Marginal (Class Two 2)	0.00	Moderately Stress Index Level	Local nitrate hot spots	11.65
B31G	433	5.98	1.97	0.31	1.42	1.71	0.30	0.42	B-Largely Natural	Marginal (Class Two, 2)	1.59	Minimum Stress Index Level	Salinity & nitrates elevated areas	36.62
B31H	612	6.58	2.61	1.64	4.36	3.6	0.64	0.26	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	Dissolved solids within acceptable limits	52.55
B31J	1380	17 80	0.00	0.10	30.84	0.1	3 93	0.10	E – Seriously modified	Marginal (Class Two 2)	0.00	Groundwater allocation significant over-allocated	Elevated NO3-N Mg and SO4 (rising trend) levels	1 28
B324	801	18.24	15.73	0.05	0.54	16 31	0.03	0.07	A-Linmodified	Good (Class One 1)	4.36	Minimum Stress Index Level		77.01
B32B	614	11.06	10.73	0.03	0.34	9.74	0.03	0.07	A-Unmodified	Good (Class One, 1)	3.59	Minimum Stress Index Level	Dissolved solids within acceptable limits	72.69
B32C	303	3.62	2 80	0.04	3 47	11	1 0.9	0.12	E – Seriously modified	Good (Class One 1)	0.00	Highly stressed Index Level		34 48
B32D	521	6.99	2.47	0.07	3.14	3.22	0.63	0.07	C-Moderately modified	Good (Class One, 1)	0.00	Highly stressed Index Level	In terms of TDS, nitrates and sulphates, water quality still within acceptable concentrations.	65.05
B32E	203	2.74	1.24	0.01	0.19	1.6	0.08	0.08	A-Unmodified	Good (Class One. 1)	0.67	Minimum Stress Index Level		65.84
B32F	667	4.27	1.71	0.34	4.30	1.05	1.16	0.43	D - Largely modified	Good (Class One, 1)	0.00	Highly stressed Index Level	Dissolved solids within acceptable limits	28.30

		INPUT	OUTPUT											
Catch- ment	Area (km²)	Rech to Aqf (WSM & SRK)	Gw Bf (WSM & SRK)	BHN Reserve (Mm3/a)	Total Gwater Use (Mm3/a)	Total Gw Reserve (Mm3/a)	SI = Gw Use / Aqf Rech	(Mm3/a)	Quantity Index (GRDM)	Quality Index (Research Reports)	Allocable Gwater (Mm3/a)	Quantity Directive/ Recommendation i.t.o. New allocations.	Gw Quality Status/Trend i.t.o long-term sustainability	Reserve (% of Recharge)
		Ave	Ave		Calc'd		WSM2013	Exigo ₂₀₀₉	Ranked WSM	Ranked	Cal'd			
B32G	968	11.99	4.11	1.83	5.85	3.18	0.66	0.57	C-Moderately modified	Good (Class One, 1)	0.07	Moderately Stress Index Level	Salinity & nitrates elevated areas	35.77
B32H	694	11.81	5.10	0.06	2.90	5.83	0.28	0.16	B-Largely Natural	Good (Class One, 1)	1.49	Minimum Stress Index Level		57.10
B32J	323	1.97	0.03	0.44	1.01	0.44	0.86	0.79	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level		37.61
B41A	765	13.36	13.57	0.14	0.06	14.93	0.00	0.32	A-Unmodified	Good (Class One, 1)	3.47	QC water balance assessment required.	Dissolved solids within accentable limits	81.67
B41B	778	15.09	13.56	0.04	1.23	15	0.07	0.14	A-Unmodified	Good (Class One, 1)	2.45	Minimum Stress Index Level		81.04
B41C	302	4.57	5.20	0.02	0.54	5.81	0.08	1.00	C-Moderately modified	Good (Class One, 1)	0.90	Minimum Stress Index Level		80.81
B41D	403	5.60	3.82	0.09	1.72	2.7	0.35	0.12	B-Largely Natural	Good (Class One, 1)	0.59	Minimum Stress Index Level		54.33
B41E	237	3.98	0.02	0.23	0.11	0.23	0.09	0.17	A-Unmodified	Marginal (Class Two, 2)	0.83	Minimum Stress Index Level	Local nitrate hot spots.	19.66
B41F	380	9.04	8.96	0.01	0.00	10	0.00	0.05	A-Unmodified	Marginal (Class Two, 2)	1.03	Minimum Stress Index Level		91.91
B41G	442	9.06	9.41	0.01	0.38	10.35	0.03	0.41	A-Unmodified	Marginal (Class Two, 2)	0.88	Minimum Stress Index Level	Not impacted, head waters area.	90.71
B41H	410	5.07	0.05	0.35	0.16	0.35	0.06	0.34	A-Unmodified	Marginal (Class Two, 2)	2.06	Minimum Stress Index Level	Long-term quality stable trends.	13.62
B41J	691	7.59	0.10	0.41	0.64	0.41	0.15	0.45	A-Unmodified	Marginal (Class Two, 2)	3.26	Minimum Stress Index Level		9.51
B41K	635	5.27	0.12	0.47	1.99	0.47	0.56	0.34	B-Largely Natural		1.07	Minimum Stress Index Level		13.31
B42A	319	6.25	12.61	0.02	3.46	9.83	0.33	0.24	B-Largely Natural	Good (Class One, 1)	0.00	Minimum Stress Index Level	Dissolved solids within acceptable limits	92.39
B42B	214	7.55	9.54	0.17	0.06	6.45	0.01	0.15	A-Unmodified	Good (Class One, 1)	1.29	Minimum Stress Index Level	Potential impact from local mines (TDS & SO ₄)	84.31
B42C	164	3.05	1.98	0.00	0.00	2.57	0.00	0.11	C-Moderately modified	Marginal (Class Two, 2)	0.28	Minimum Stress Index Level		96.62
B42D	155	4.98	8.58	0.00	0.00	5.72	0.00	0.07	A-Unmodified	Marginal (Class Two, 2)	0.99	Minimum Stress Index Level		90.36
B42E	221	2.26	1.62	0.01	0.22	2	0.11	0.23	A-Unmodified	Marginal (Class Two, 2)	0.00	Minimum Stress Index Level	Local nitrate hot spots. (Unfortunately limited time series dataset)	98.04
B42F	279	5.96	10.49	0.01	0.22	8.50	0.02	0.17	A-Unmodified	Marginal (Class Two, 2)	0.67			91.16
B42G	327	3.57	2.80	0.01	0.00	0.07	0.64	0.21	B-Largely Natural	Marginal (Class Two, 2)	1.25	Minimum Stross Index Level		93.20
B51A	312	2.49	0.05	0.07	0.99	0.07	0.43	0.69	B-Largely Natural	Marginal (Class Two, 2)	1.23	Moderately Stress Index Level	Local nitrate hot spots	17.86
B51B	591	6.16	0.04	0.46	0.00	0.46	0.04	0.03	A-Linmodified	Marginal (Class Two, 2)	4.03	Minimum Stress Index Level	Local nitrate hot spots	9.54
B51C	638	5.58	0.03	0.45	0.00	0.45	0.05	0.30	A-Unmodified	Marginal (Class Two, 2)	3.85	Minimum Stress Index Level	Local nitrate hot spots	9.96
B51F	2927	22.24	0.00	0.34	8.56	0.34	1.36	0.00	D - Largely modified	Good (Class One 1)	0.00	QC water balance assessment required.	Salinity & nitrates elevated areas	5.39
B51F	395	3.79	0.04	0.01	3.02	0.01	1.11	0.12	D - Largely modified	Marginal (Class Two, 2)	0.00	QC water balance assessment required.	Local nitrate hot spots.	0.37
B51G	591	5.02	0.04	0.97	12.43	0.97	3.28	0.70	F-Critically modified	Good (Class One, 1)	0.00	Groundwater allocation significant over-allocated	Salinity & nitrates elevated areas	25.59
B51H	717	10.86	0.07	0.98	0.57	0.98	0.12	0.31	A-Unmodified	Marginal (Class Two, 2)	3.35	Minimum Stress Index Level	Local nitrate hot spots.	20.00
B52A	566	6.27	0.01	0.48	0.28	0.48	0.11	0.36	A-Unmodified	Good (Class One, 1)	1.82	Minimum Stress Index Level	Salinity & nitrates elevated areas	18.60
B52B	633	7.37	0.06	1.07	2.08	1.07	0.29	0.64	B-Largely Natural	Good (Class One, 1)	3.94	Minimum Stress Index Level	Local nitrate hot spots.	15.09
B52C	200	1.60	0.00	0.16	0.22	0.16	0.23	0.43	B-Largely Natural	Good (Class One, 1)	0.58	Minimum Stress Index Level	Local nitrate hot spots.	16.67
B52D	341	4.30	0.01	0.73	1.19	0.73	0.57	0.43	C-Moderately modified	Good (Class One, 1)	0.17	Moderately Stress Index Level	Salinity & nitrates elevated areas	34.93
B52E	451	6.52	0.03	0.34	0.51	0.34	0.11	0.28	B-Largely Natural	Good (Class One, 1)	3.81	Minimum Stress Index Level	Local nitrate hot spots.	7.30
B52F	118	1.26	0.00	0.09	0.47	0.09	0.81	0.27	C-Moderately modified	Good (Class One, 1)	0.02	Moderately Stress Index Level	Local nitrate hot spots.	15.52
B52G	291	3.73	0.00	0.22	0.84	0.22	0.62	0.29	C-Moderately modified	Good (Class One, 1)	0.29	Minimum Stress Index Level	Salinity & nitrates elevated areas	16.30
B52H	563	4.28	0.14	0.66	0.77	0.66	0.23	0.65	B-Largely Natural	Good (Class One, 1)	1.95	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	19.53
B52J	395	6.91	0.03	0.22	0.14	0.22	0.07	0.22	C-Moderately modified	Good (Class One, 1)	1.73	QC water balance assessment required.	Local elevated Salinity & nitrates levels.	10.53
B60A	209	11.69	29.79	0.02	0.13	11.48	0.01	0.06	A-Unmodified	Ideal (Class Zero, 0)	2.23	QC water balance assessment required.	Local elevated Salinity & nitrates levels.	88.79
B60B	302	17.79	37.05	0.01	0.00	17.19	0.00	0.02	A-Unmodified	Marginal (Class Two, 2)	3.83	QC water balance assessment required.	Local elevated Salinity & nitrates levels.	85.01
B60C	94	3.08	13.68	0.00	0.00	4.93	0.00	0.09	A-Unmodified	Marginal (Class Two, 2)	0.97	QC water balance assessment required.	Local elevated Salinity & nitrates levels.	92.50
B60D	244	12.62	17.29	0.15	0.00	14.15	0.00	0.18	A-Unmodified	Marginal (Class Two, 2)	2.52	QC water balance assessment required.	Local elevated Salinity & nitrates levels.	88.55
B60E	83	1.52	3.61	0.00	0.00	0.76	0.00	0.05	A-Unmodified	Ideal (Class Zero, 0)	1.00	QC water balance assessment required.	Not impacted, head waters area.	43.93

		INPUT	OUTPUT											
Catch- ment	Area (km²)	Rech to Aqf (WSM & SRK)	Gw Bf (WSM & SRK)	BHN Reserve (Mm3/a)	Total Gwater Use (Mm3/a)	Total Gw Reserve (Mm3/a)	SI = Gw Use / Aqf Rech	(Mm3/a)	Quantity Index (GRDM)	Quality Index (Research Reports)	Allocable Gwater (Mm3/a)	Quantity Directive/ Recommendation i.t.o. New allocations.	Gw Quality Status/Trend i.t.o long-term sustainability	Reserve (% of Recharge)
		Ave	Ave		Calc'd		WSM2013	Exigo ₂₀₀₉	Ranked WSM	Ranked	Cal'd			
B60F	399	6.61	4.94	0.01	2.71	5.44	0.35	0.21	B-Largely Natural	Ideal (Class Zero, 0)	0.00	Minimum Stress Index Level	Not impacted, head waters area.	70.83
B60G	448	6.00	2.51	0.03	3.71	1.35	0.82	0.11	C-Moderately modified	Ideal (Class Zero, 0)	0.00	Minimum Stress Index Level	Not impacted, head waters area.	29.87
B60H	385	9.44	5.26	0.14	5.34	6.29	0.70	0.18	D - Largely modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	Local elevated Salinity & nitrates levels.	82.98
B60J	676	11.34	19.66	0.05	1.37	6.51	0.10	0.12	A-Unmodified	Marginal (Class Two, 2)	5.21	QC water balance assessment required.	Local nitrate hot spots.	49.89
B71A	298	8.49	0.08	0.03	0.23	0.03	0.07	0.06	A-Unmodified	Good (Class One, 1)	3.11	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	0.89
B71B	274	4.75	0.02	0.07	0.19	0.07	0.09	0.11	A-Unmodified	Good (Class One, 1)	1.85	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	3.32
B71C	263	6.36	9.35	0.03	0.00	2.2	0.00	0.06	A-Unmodified	Marginal (Class Two, 2)	3.78	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	37.48
B71D	227	3.00	4.45	0.10	0.22	2.08	0.05	0.44	A-Unmodified	Marginal (Class Two, 2)	1.77	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	51.61
B71E	782	5.20	0.15	0.80	1.55	0.8	0.25	0.90	B-Largely Natural	Marginal (Class Two, 2)	3.90	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	12.80
B71F	541	17.12	15.63	0.07	0.03	9.18	0.00	0.05	A-Unmodified	Marginal (Class Two, 2)	3.84	Minimum Stress Index Level	Local elevated Salinity & nitrates levels.	72.40
B71G	245	6.10	7.64	0.13	0.22	4.1	0.03	0.18	A-Unmodified	Marginal (Class Two, 2)	2.87	Moderately Stress Index Level	Local elevated Salinity & nitrates levels.	59.08
B71H	330	2.02	0.00	0.20	2.52	0.2	1.62	0.43	C-Moderately modified	Marginal (Class Two, 2)	0.00	Highly stressed Index Level	Salinity & nitrates hot spots, rising.	12.82
B71J	79	0.33	0.00	0.01	0.00	0.01	0.00	0.26	A-Unmodified	Marginal (Class Two, 2)	0.17	Highly stressed Index Level	Salinity & nitrates hot spots, rising.	5.56
B72A	534	10.41	14.22	0.54	3.01	9.18	0.24	0.33	B-Largely Natural		0.56	Minimum Stress Index Level		73.26
B72B	332	2.20	0.00	0.00	0.06	0	0.04	0.07	A-Unmodified		1.31	Minimum Stress Index Level		0.00
B72C	335	2.88	0.00	0.05	0.07	0.05	0.04	0.11	A-Unmodified		1.76	Minimum Stress Index Level		2.66
B72D	922	7.63	0.00	0.01	4.49	0.01	0.69	0.13	B-Largely Natural	Good (Class One, 1) & Marginal (Class Two, 2)	2.04	Moderately Stress Index Level	TDS and SO4 are largely at acceptable levels,	0.15
B72E	320	5.65	8.81	0.45	0.90	5.35	0.11	0.87	B-Largely Natural	Marginar (Class 1 wo, 2)	2.48	QC water balance assessment required.	although salinity and nitrate hot spots are present.	62.65
B72F	81	2.29	2.71	0.00	0.00	1.3	0.00	0.02	A-Unmodified		1.07	Moderately Stress Index Level		57.27
B72G	48	0.34	0.00	0.01	0.43	0.01	3.58	0.13	E – Seriously modified		0.00	Highly stressed Index Level		8.33
B72H	386	2.60	0.00	0.01	0.92	0.01	0.47	0.17	B-Largely Natural		1.01	QC water balance assessment required.		0.52
B72J	537	2.77	0.00	0.03	0.16	0.03	0.05	0.16	A-Unmodified	Marginal (Class Two, 2)	2.72	Minimum Stress Index Level	Marginal (Class Two, 2)	1.03
B72K	966	7.09	0.00	0.52	0.61	0.52	0.18	0.38	A-Unmodified	Marginal (Class Two, 2)	2.32	Minimum Stress Index Level	High salinity (Phalaborwa - B72K) & nitrate.	15.07
B73A	165	2.48	6.33	0.00	0.00	1.29	0.00	0.61	A-Unmodified	-	1.04	QC water balance assessment required.		58.64
B73B	688	3.36	0.00	0.01	2.75	0.01	1.26	0.26	C – Moderately modified	-	0.00	Moderately Stress Index Level		0.46
B73C	880	7.18	0.00	0.65	1.01	0.65	0.32	0.09	A-Unmodified	-	1.53	Minimum Stress Index Level		20.38
B73D	687	4.87	0.00	0.00	1.20	0	0.51	0.11	B-Largely Natural	Good (Class One, 1) &	1.14	Minimum Stress Index Level	TDS and SO4 are largely at acceptable levels, although salinity and nitrate hot spots are	0.00
B73E	431	3.03	0.00	0.00	0.35	0	0.14	1.00	B-Largely Natural	Marginal (Class Two, 2)	2.16	Minimum Stress Index Level	present.	0.00
B73F	507	6.66	0.00	0.00	0.00	0	0.00	0.02	A-Unmodified	-	3.37	Minimum Stress Index Level	elevated/rising nitrate areas.	0.00
B73G	733	9.88	0.00	0.00	0.00	0	0.00	0.07	A-Unmodified	-	4.31	Minimum Stress Index Level		0.00
B73H	302	1.95	0.00	0.00	0.00	0	0.00	0.03	A-Unmodified	-	1.50	Minimum Stress Index Level		0.00
B73J	255	1.81	0.00	0.00	0.00	0	0.00	0.69	A-Unmodified		1.55	Minimum Stress Index Level		0.00
B81A	169	10.34	7.57	0.00	0.15	7.57	0.01	0.01	A-Unmodified	Ideal (Class Zero, 0)	10.19	Minimum Stress Index Level	Not impacted, head waters area.	73.21
B81B	481	20.32	1.12	0.00	2.64	1.12	0.13	0.13	B-Largely Natural	Ideal (Class Zero, 0)	17.68	Minimum Stress Index Level	Salinity & nitrates hot spots, rising.	5.51
B81C	208	16.27	10.54	0.00	5.47	10.54	0.34	0.34	C – Moderately modified	Ideal (Class Zero, 0)	10.80	Moderately Stress Index Level	Not impacted, head waters area.	64.78
B81D	479	12.84	1.59	3.00	4.13	4.59	0.32	0.32	C-Moderately modified	Ideal (Class Zero, 0)	8.71	Moderately Stress Index Level	Marginal (Class Two, 2)	35.75
B81E	665	18.20	0.04	0.59	15.75	0.63	0.87	0.87	D-Largely modified	Ideal (Class Zero, 0)	2.45	Groundwater allocation significant over-allocated	Local salinity & nitrate hot spots.	3.46
B81F	1200	18.47	0.06	0.00	7.94	0.06	0.43	0.43	D - Largely modified	Marginal (Class Two, 2)	10.53	Highly stressed Index Level	Salinity & nitrates hot spots, rising.	0.32
B81G	512	12.58	0.13	0.00	5.06	0.13	0.40	0.40	D – Largely modified	Good (Class One, 1)	7.52	Highly stressed Index Level	Salinity & nitrates hot spots, rising.	1.03
B81H	668	8.80	0.01	0.00	2.62	0.01	0.30	0.30	C – Moderately modified	Marginal (Class Two, 2)	6.18	Moderately Stress Index Level	Salinity & nitrates elevated areas	0.11

		INPUT	OUTPUT											
Catch- ment	Area (km²)	Rech to Aqf (WSM & SRK)	Gw Bf (WSM & SRK)	BHN Reserve (Mm3/a)	Total Gwater Use (Mm3/a)	Total Gw Reserve (Mm3/a)	SI = Gw Use / Aqf Rech	(Mm3/a)	Quantity Index (GRDM)	Quality Index (Research Reports)	Allocable Gwater (Mm3/a)	Quantity Directive/ Recommendation i.t.o. New allocations.	Gw Quality Status/Trend i.t.o long-term sustainability	Reserve (% of Recharge)
		Ave	Ave		Calc'd		WSM2013	Exigo ₂₀₀₉	Ranked WSM	Ranked	Cal'd			
B81J	567	6.34	0.00	0.00	0.00	0	0.00	0.00	A - Unmodified	Marginal (Class Two, 2)	6.34	Minimum Stress Index Level	Salinity & nitrates elevated areas	0.00
B82A	467	11.36	6.45	1.45	2.93	7.9	0.26	0.26	B - Largely natural	Good (Class One, 1)	8.43	Moderately Stress Index Level	Local nitrate hot spots.	69.54
B82B	406	9.50	5.47	0.00	14.50	5.47	1.53	1.53	F-Critically modified	Ideal (Class Zero, 0)	0.00	Groundwater allocation significant over-allocated	Local nitrate hot spots.	57.58
B82C	300	7.14	3.27	0.00	13.00	3.27	1.82	1.82	F-Critically modified	Marginal (Class Two, 2)	5.83	Groundwater allocation significant over-allocated	Salinity & nitrates elevated areas	45.80
B82D	632	10.35	4.76	4.00	4.52	8.76	0.44	0.44	D-Largely modified	Ideal (Class Zero, 0)	0.00	Moderately Stress Index Level	Not impacted, head waters area.	84.64
B82E	423	8.05	0.21	0.00	1.45	0.21	0.18	0.18	C – Moderately modified	Good (Class One, 1)	6.60	Highly stressed Index Level	Salinity & nitrates hot spots, rising.	2.61
B82F	760	14.30	1.00	0.00	1.43	1	0.10	0.10	B - Largely natural	Good (Class One, 1)	12.87	Minimum Stress Index Level	Salinity & nitrates hot spots, rising.	6.99
B82G	920	10.75	0.01	0.00	0.06	0.01	0.01	0.06	B - Largely natural	Poor (Class Three, 3)	10.15	Minimum Stress Index Level	Significant nitrate pollution (Giyani)	0.09
B82J	749	9.27	0.01	0.00	0.00	0.01	0.00	0.00	A – Unmodified	Marginal (Class Two, 2)	9.27	Minimum Stress Index Level	Nitrates hot spots, rising.	0.11
B82H	794	8.36	0.01	0.00	0.16	0.01	0.02	0.02	A – Unmodified	Marginal (Class Two, 2)	8.36	Minimum Stress Index Level	Significant nitrate pollution	0.12
B83A	1250	11.77	0.01	0.00	0.00	0.01	0.00	0.00	A – Unmodified	Ideal (Class Zero, 0)	11.77	Minimum Stress Index Level	Not impacted, head waters area.	0.08
B83B	439	5.71	0.00	0.00	0.00	0	0.00	0.00	A – Unmodified	Ideal (Class Zero, 0)	5.71	Minimum Stress Index Level	Not impacted, head waters area.	0.00
B83C	596	7.70	0.01	0.00	0.00	0.01	0.00	0.00	A – Unmodified	Ideal (Class Zero, 0)	7.70	Minimum Stress Index Level	Not impacted, head waters area.	0.13
B83D	784	7.88	0.00	0.00	0.00	0	0.00	0.00	A – Unmodified	Ideal (Class Zero, 0)	7.88	Minimum Stress Index Level	Not impacted, head waters area.	0.00
B83E	312	3.11	0.00	0.00	0.00	0	0.00	0.00	A – Unmodified	Ideal (Class Zero, 0)	3.11	Minimum Stress Index Level	Not impacted, head waters area.	0.00
			0.00											
B90A	692	5.01	0.00	0.08	0.02	0.08	0.00	0.00	A – Unmodified	Good (Class One, 1)	4.93	Minimum Stress Index Level	Not impacted, head waters area.	1.64
B90B	753	5.87	0.00	0.53	0.53	0.53	0.09	0.09	A – Unmodified	Good (Class One, 1)	5.34	Minimum Stress Index Level	Local elevated salts (Na, CI & TAL)	9.03
B90C	534	4.36	0.00	0.40	0.40	0.40	0.09	0.09	A – Unmodified	Good (Class One, 1)	3.96	Minimum Stress Index Level	Not impacted, head waters area.	9.17
B90D	446	3.14	0.00	0.03	0.00	0.03	0.00	0.00	A – Unmodified	Good (Class One, 1)	3.11	Minimum Stress Index Level	Local elevated salts (Na, CI & TAL)	1.08
B90E	473	2.94	0.00	0.03	0.00	0.03	0.00	0.00	A – Unmodified	Good (Class One, 1)	2.91	Minimum Stress Index Level	Local elevated salts (Na, CI & TAL)	1.12
B90F	818	7.99	0.00	0.53	0.53	0.53	0.07	0.07	A – Unmodified	Marginal (Class Two, 2)	7.46	Minimum Stress Index Level	Local elevated salts and nitrates.	6.63
B90G	697	8.89	0.00	0.10	0.10	0.10	0.01	0.01	A – Unmodified	Marginal (Class Two, 2)	8.79	Minimum Stress Index Level	Local elevated salts and nitrates.	1.12
B90H	887	7.53	0.00	0.20	0.20	0.20	0.03	0.03	A – Unmodified	Marginal (Class Two, 2)	7.33	Minimum Stress Index Level	Local elevated salts and nitrates.	2.66

Please note

Quantity Index description based on the estimation of the so-called aquifer Stress Index (i.e. Use/Rech, groundwater use divided by the local recharge), A (<0.05), B (0.05-0.20), C (0.20-0.40), D (0.40-0.65), E (0.65-0.95) and F(>0.95).....MAX should be a C. All SI's >C needs water balance assessments and categorised hydrogeological investigations for new water use applications (viz. Quantity Directive as a guideline).

Quality Index description based on the DWAF et al, 1998 Domestic water quality classification and the available water quality data – which unfortunately is based on a quaternary level and outdated as well. This is just a narrative of the water quality status.

Quantity Directive describes the actual activity required to allow additional water allocations and is based on the Quantity Index, Allocable Groundwater and Recharge (% of Recharge). The following criteria has been adopted as a guideline for future groundwater investigations to support water use license conditions:

- Minimum Stress Index Level (Groundwater investigation limited to local water balance estimation and hydrocensus)
- Medium Stress Index Level (Groundwater investigation more detail in terms of hydrogeological conditions, hydrocensus, limited monitoring requirements, mapping of other abstractions and water balance);
- High Stress Index Level (High-level groundwater investigation, monitoring boreholes, specific license conditions, aquifer characterisation, recharge estimates, regional potential impacts and piezometric mapping)
- QC water balance assessment required (Current water balances for quaternary catchment does not match and Allocable groundwater is < 1 MCM/a)); and
- Groundwater allocation (or use) significantly over-allocated, means that use is potentially impacting on the Groundwater Component of the Reserve.

Gw Quality Status/Trend i.t.o. long-term sustainability describes specific groundwater quality signatures and should help as an indicator of management measure to address these water quality trends. Some of the trends are regional impacts, i.e. the elevated nitrate (NO₃–N) values in irrigated areas (Springbok Flats) and rural villages in the upper/middle Olifants and upper Letaba regions.

Quaternary catchments shaded with Blue is mainly dolomite water areas (with a grouping of dolomite compartment units)

r abstractions and water balance); ential impacts and piezometric mapping)

		INPUT	OUTPUT											
Catch- ment	Area (km²)	Rech to Aqf (WSM & SRK)	Gw Bf (WSM & SRK)	BHN Reserve (Mm3/a)	Total Gwater Use (Mm3/a)	Total Gw Reserve (Mm3/a)	SI = Gw Use / Aqf Rech	(Mm3/a)	Quantity Index (GRDM)	Quality Index (Research Reports)	Allocable Gwater (Mm3/a)	Quantity Directive/ Recommendation i.t.o. New allocations.	Gw Quality Status/Trend i.t.o long-term sustainability	Reserve (% of Recharge)
		Ave	Ave		Calc'd		WSM2013	Exigo ₂₀₀₉	Ranked WSM	Ranked	Cal'd			

6 WETLAND SPECIFICATIONS

Refer to Table 125 which shows the selected priority wetlands within the Olifants, Letaba and Shingwedzi catchments and the motivation thereof. Table 126 illustrates the ecological specifications for each priority wetland and associated monitoring requirements. Both tables include the Integrated Unit of Analysis (IUA), Quaternary Catchment, Wetland ID, Wetland Name, Wetland Type, Present Ecological State (PES) Category, Ecological Importance and Sensitivity (EIS) Category for each priority wetland.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
1	B11E	Oli_1.1	Blesbokspruit wetland	Floodplain	E/F (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). It has also been flagged for protection through the NFEPA process (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015). The wetland is well placed to provide a water quality and flood protection function but is threatened by headward erosion. Wetland has been prioritized to ensure that water quality enhancement and biodiversity maintenance functions are not impaired. Parts of the wetland have been undermined. Possible risk of water quality deterioration.
1	B11E	Oli_1.2	Rietspruit wetland	Unchannelled valley bottom; Channelled valley bottom	D (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). It has also been flagged for protection through the NFEPA process (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015). The system provides a corridor for species movement in a mining altered landscape, with otters utilising the area. The wetland is also well placed to provide a water quality and flood protection function. Wetland attributes have therefore been prioritized to help ensure that key services identified are maintained. Preventing incision is regarded as critical for maintaining habitat attributes.
1	B11D	Oli_1.3	Kriel wetland	Channelled valley bottom	C/D (Mbona et al. 2015)	Moderate	Identified as a priority wetland in DWS (2014). The wetland is located directly downstream of mining operations and power stations in the catchment upstream of Witbank Dam. Livestock watering is also important downstream but can be jeopardized by poor water quality. While being well placed to provide an important water quality enhancement function, the wetland is affected by headward erosion that is affecting the system's ability to perform these functions.
1	B11F	Oli_1.4	Klipoortjiespruit wetland	Unchannelled valley bottom	D (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). It has been flagged for protection through the NFEPA process (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015) and is one of the more intact unchannelled valley bottom wetlands remaining in the upper Olifants River catchment. Extensive existing mining activities as well as future proposed mining activities in the upstream catchment leave this wetland well-placed to play an important role in water quality maintenance.
1	B11B	Oli_1.5	Koringspruit wetland	Channelled valley bottom (section of unchannelled valley bottom)	D (Mbona et al. 2015)		Identified as a priority wetland in DWS (2014). This wetland is located within a mining landscape upstream of the Witbank dam. Most wetlands in the area have been affected by mining operations and channel incision that has affected their functional value. This wetland includes a section of unchannelled valley bottom habitat important for water quality enhancement but is threatened by headward erosion.
1	B11K	Oli_1.6	Klipspruit wetland	Unchannelled valley bottom	D (Mbona et al. 2015)	High (B1 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014). This extensive unchannelled valley bottom wetland is located directly downstream of Witbank Town and receives water from old mines, urban areas and waste water treatment works. Given the sites location downstream of these impacts and upstream of Loskop dam and other areas used for recreational activities, the wetland clearly provides a critical water quality enhancement function.

Table 125: List of the priorit	ty wetlands in the Olifants	, Letaba and Shingwedzi ca	atchments an	nd the motivation

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
1	B12A	Oli_1.7	Klein-Olifants tributary	Channelled valley bottom; Hillslope seepage	D (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014) and a wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015). This wetland, though moderately modified and somewhat incised, is likely to be a representative wetland of this wetland vegetation group. The wetland also falls within an area where wetlands have been flagged as important for crane conservation. Maintenance of wetland vegetation and associated wetland habitat for cranes is therefore regarded as a priority.
1	B12B	Oli_1.8	Matla wetland	Channelled valley bottom	C (Mbona et al. 2015)		Identified as a priority wetland in DWS (2014) and a wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015). This wetland is located in the upper catchment and is largely intact and is therefore a useful intact example of wetlands within this wetland vegetation group. The wetland also falls within an area where wetlands have been flagged as important for crane conservation. Maintenance of wetland vegetation and associated wetland habitat for cranes and other wetland-dependant biota is therefore regarded as a priority.
1	B12B	Oli_1.9	Woes-alleenspruit wetland	Unchannelled valley bottom	C (Mbona et al. 2015)	Moderate to High (B1 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014) and a wetland FEPA by Mbona <i>et al.</i> (2015). The wetland is located in the Middleburg Dam catchment and directly downstream of extensive coal mining operations. It is therefore well placed to provide a water quality enhancement function.
1	B12B	Oli_1.10	Bosmanspruit wetland	Unchannelled valley bottom	C (Mbona et al. 2015)	Moderate to High (B1 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014) . This unchannelled valley bottom wetland is located in the Middleburg Dam catchment and directly adjacent to extensive coal mining operations. It is therefore well placed to provide a water quality enhancement function.
1	B12C	Oli_1.11	Kopermyn wetland	Unchannelled valley bottom; Channelled valley bottom Hillslope seepage	C (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). This is a large example of reasonably intact valley bottom wetland downstream of mining operations with further mining anticipated in the catchment (high mining potential). The wetland provides useful habitat for wildlife and provides a range of regulating and supporting services important for downstream users. Middelburg Dam is located only several kilometres downstream of the wetland.
1	B11C	Oli_1.12	Debeerspruit/Pieke spruit floodplain	Floodplain	A/B (Mbona et al. 2015)	High	Identified as a wetland FEPA (Mbona <i>et al.</i> , 2015). This is a good representative example of a floodplain type wetland within the Upper Olifants River Catchment. The system is extensive and in relatively good condition. This system is important for flood attenuation and biodiversity support. The system is potentially at risk from future mining applications.
1	B11A	Oli_1.13	Viskuile floodplain complex	Floodplain	C (Mbona et al. 2015)	High to Very High	The Viskuile floodplain complex is a largely intact wetland system located in the upper catchment of the Olifants River. It is considered a good example of this wetland type within this wetland vegetation group. The wetland provides important habitat for wildlife and provides a range of regulating and supporting services important for downstream users. Existing and future mining activities within the wetland catchment indicate that the

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
							wetland complex is well placed to provide a water quality enhancement function. A large population of <i>Crinum bulbispernum</i> occurs within the floodplain.
1	B11C	Oli_1.14	Steenkoolspruit floodplain	Floodplain	D (Mbona et al. 2015)	High	Identified as a wetland FEPA (Mbona <i>et al.</i> , 2015). This is a good representative example of a floodplain type wetland within the Upper Olifants River catchment. The system is extensive and in relatively good condition. This system is important for flood attenuation and biodiversity support. The system is potentially at risk from future mining applications.
2	B20C	Oli_2.1	Elandsvlei pans	Pan/depression; Hillslope seepage	C (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). This cluster of pans was identified as an area of exceptional biodiversity importance as part of the NFEPA process (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015). They have also been highlighted as providing important habitat for African Grass Owls (<i>Tyto capensis</i>) within a largely transformed catchment. The pans are also utilised recreationally for bird watching purposes.
2	B20B	Oli_2.2	Koffiespruit tributary	Channelled valley bottom	A/B (Mbona et al. 2015)	Moderate to High (B2 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014). This wetland is largely intact and is likely to be a representative wetland of this wetland vegetation group. Maintaining vegetation characteristics is regarded as most important from a biodiversity perspective.
2	B20A	Oli_2.3	Delmas wetland	Channelled valley bottom	D (Mbona et al. 2015)	Moderate	Identified as a priority wetland in DWS (2014). This wetland is located in an urban context and downstream of a waste water treatment works and old waste disposal facilities. Management of the waste water treatment works is reportedly problematic with a blue drop score of 18% obtained in 2011. The wetland is therefore well placed to improve poor water quality and reduce potential negative health effects for local communities. This function is however threatened by channel incision.
2	B20A	Oli_2.4	Bronkhorstspruit tributary	Unchannelled valley bottom; Channelled valley bottom Hillslope seepage	C (Mbona et al. 2015)	High	This large, extensive unchannelled valley bottom wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015) provides important habitat for the African Grass Owl (<i>Tyto capensis</i>). Given the agricultural context and anticipated expansion of future mining operations, the wetland is also well placed to improve water quality. This is also the headwaters of the Bronkhorstspruit. The wetland is located in a groundwater stressed catchment (see Groundwater Report).
2	B20E	Oli_2.5	Wilge tributary	Floodplain; Channelled valley bottom	A/B to C (Mbona et al. 2015)	Moderate to High	Identified as a priority wetland in DWS (2014). A portion of the wetland system has also been identified as a FEPA by Mbona <i>et al.</i> (2015). This is one of few largely intact valley bottom wetlands that remain in the upper Wilge River catchment. The wetland system is also located within a priority mining and power generation area and is therefore well placed to reduce water quality impacts to the Wilge River.
2	B20G	Oli_2.6	Zaalklap wetland	Unchannelled valley bottom	D (Mbona et al. 2015)	High	Identified as a priority wetland in DWS (2014). This naturally unchannelled valley bottom has been flagged as a wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015) based on its importance for biodiversity maintenance. The wetland supports healthy populations of Marsh Owls whilst the reed beds are used for roosting by large numbers of Cattle Egrets. Given the wetlands location directly downstream of existing coal mining operations and

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
							likely future mining operations, the wetland is also well placed to improve water quality for downstream users. Rehabilitation efforts have already been successfully undertaken on parts of the wetland to improve the functionality of the system.
2	B20G	Oli_2.7	Saalboomspruit/ Saalklapspruit wetland	Unchannelled valley bottom; Channelled valley bottom	D (Mbona et al. 2015)	Moderate to High (B2 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014). This naturally unchannelled valley bottom has been flagged as a wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015) and is known to support unusually large populations of African Snipe (<i>Gallinago nigripennis</i>). Given the wetlands location directly downstream of coal mining operations and the Phola waste water treatment works, it is also well placed to improve water quality for downstream users.
2	B20E	Oli_2.8	Upper Wilge River Floodplain	Floodplain	D (Mbona et al. 2015)	High (B2 Olifants PESEIS 2011)	This floodplain wetlands forms part of the Upper Wilge River system and has been identified by Mbona <i>et al.</i> (2015) as a wetland FEPA. The system is extensive and is considered important for flood attenuation and biodiversity support. The system is potentially at risk from future mining applications.
3	B12E	Oli_3.1	Klein-Olifants tributary	Floodplain; Channelled valley bottom; Hillslope seepage	A/B to C (Mbona et al. 2015)		Identified as a priority wetland in DWS (2014). This wetland FEPA (Nel <i>et al.</i> , 2011 and Mbona <i>et al.</i> , 2015) is largely intact and is a useful example of this wetland vegetation group. The wetland also falls within an area prioritized for crane conservation. Maintenance of wetland vegetation and associated wetland habitat is therefore regarded as a priority.
4	B31A	Oli_4.1	Elands tributary wetland	Channelled valley bottom; Hillslope seepage	C (Nel et al., 2011)		Identified as a priority wetland in DWS (2014). Despite being moderately modified, this large wetland has been identified as a wetland FEPA (Nel <i>et al.</i> , 2011) supporting crane populations. Maintenance of appropriate habitat attributes is therefore regarded as important.
5	B51C	Oli_5.1	Makotswane	Channelled valley bottom; Hillslope seepage	С	Very High	This wetland is a good representative example of a granitic peatland. The wetland is likely to provide flow regulatory services in the catchment. Associated hillslopes comprise deep sand which helps to maintain water quality and feed the valleybottom systems and associated streams. This flow regulation service is an important function in this relatively arid region. Likely to provide important water quality enhancement function which may help to buffer the poor water quality in this section of the Olifants River. Peat related to what appear to be artesian springs occurs in this region. Giant bullfrog has been recorded in the wetlands of the area.
6	B41A	Oli_6.1	Lakenvlei wetland complex	Unchannelled valley bottom; Channelled valley bottom; Hillslope seepage	A/B (Mbona et al. 2015)	Very High	The Lakenvlei wetland complex has been identified as a wetland FEPA (Mbona <i>et al.</i> , 2015) and is one of the largest, pristine peat wetlands in Mpumalanga. The wetland supports important populations of threatened bird species including the Grey Crowned Crane (EN), Wattled Crane (CR) and White-winged Flufftail (CR). Some rehabilitation has taken place on sections of the wetland. It is also expected to be important for the

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
							supply of high quality water.
6	B41B	Oli_6.2	Welgevonden wetland	Channelled valley bottom; Hillslope seepage	A/B (Nel et al., 2011)	High to Very High	Identified as a priority wetland in DWS (2014). This FEPA wetland system (Nel <i>et al.</i> , 2011) is located in the upper reaches of the catchment and forms part of a priority wetland cluster. The wetland is important for biodiversity conservation as it contains areas of peat and supports important crane populations.
6	B41F	Oli_6.3	Draaikraal wetland 1	Channelled valley bottom	C (Nel et al., 2011)	High to Very High (B4 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014). This large FEPA (Nel <i>et al.</i> , 2011) wetland system , located within an agricultural context, is important for biodiversity conservation as it contains areas of peat and supports important crane populations. The site has been historically targeted for rehabilitation by WFWetlands.
6	B41F	Oli_6.4	Draaikraal wetland 2	Channelled valley bottom	A/B to C (Nel et al., 2011)	High to Very High	Identified as a priority wetland in DWS (2014). This FEPA (Nel <i>et al.</i> , 2011) wetland system contains peat and supports threatened crane populations. The wetland is still in good condition despite surrounding agricultural land-use pressures.
6	B41F	Oli_6.5	Draaikraal wetland 3	Hillslope seepage	A/B (Nel et al., 2011)		Identified as a priority wetland in DWS (2014). This large unchannelled peatland has been identified as a wetland FEPA (Nel <i>et al.</i> , 2011) and supports breeding populations of cranes. Wetland rehabilitation was previously implemented in this wetland to address impacts of historical drainage.
6	B41F	Oli_6.8	Verloren Valei	Comprises a mosaic of hillslope seepage wetlands and channelled and unchannelled valley bottom wetlands	A/B (Nel et al., 2011)	Very High	Verloren Valei has been listed as a Wetland of International Importance in terms of the Convention on Wetlands of International Importance (Ramsar, 1971). Verloren Valei Nature Reserve is a Provincial Nature Reserve which was proclaimed in 1983. This is the only Ramsar Wetland within the Olifants River Catchment. The wetland complex is known to support important populations of threatened bird species including the Grey Crowned Crane (EN), Wattled Crane (CR) and Blue Crane (VU). It is a botanically diverse system supporting numerous conservation important plant species.
6	B41A	Oli_6.9	Belfast wetland complex	Unchannelled valley bottom; Channelled valley bottom; Hillslope seepage	A/B to C (Nel et al., 2011)	High to Very High (B4 Olifants PESEIS 2011)	Portions of this wetland complex were identified as a priority wetland in DWS (2014). Part of this wetland complex is located in an urban setting and directly upstream of Belfast dam which is used to supply Belfast town with potable water. Upstream mining activities together with overflow from the waste water treatment works pose a threat to water quality. This wetland has therefore been prioritized based on its water quality enhancement functions. Peat may occur in this system.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
9	B60F	Oli_9.1	Krankloofpsruit wetland	Channelled valley bottom	C (Nel et al., 2011)		Identified as a priority wetland in DWS (2014). Although not identified as a wetland FEPA, this is an unusually large unchannelled valley bottom wetland located in the upper reaches of this IUA. Despite significant impacts, the wetland was prioritized due to its role in ameliorating impacts from agricultural activities.
9	B60H	Oli_9.2	Ohrigstad wetland	Channelled valley bottom	C (Nel et al., 2011)	Likely to be High to Very High (B4 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014), and identified as a wetland FEPA (Nel <i>et al.</i> , 2011), this floodplain system has been heavily degraded by subsistence cultivation. Few wetlands are located in this IUA however, and given the anticipated water quality impacts associated with agricultural use upstream, this wetland was prioritized for water quality enhancement. This wetland is located a short distance upstream of the Blyde River Dam.
10	B71G	Oli_10.1	Tufa waterfall	Tufa waterfall	В	Very High	One of only two known active tufa waterfalls within the Olifants River Catchment. Tufa is formed where carbonate minerals precipitate out of ambient temperature water and thus represent discharge of groundwater out of dolomitic aquifers. The tufa waterfall is an important cultural site that appears to be extensively utilised for this purpose. It is also a tourist attraction in the area.
13	B60C	Oli_13.1	Treur wetland	Hillslope seepage	C (Nel et al., 2011)	Likely to be Very High (B4 Olifants PESEIS 2011)	Identified as a priority wetland in DWS (2014), and identified as a wetland FEPA (Nel <i>et al.</i> , 2011). This is an important peatland system. The associated stream supports the endemic Treur River Barb (<i>Barbus treurensis</i>) which has an extremely limited distribution. The wetland and associated biota are threatened by existing forestry.
13	B60D	Oli_13.2	Kadishi waterfall	Tufa waterfall	A/B	Very High	One of only two known active tufa waterfalls within the Olifants River Catchment. Tufa is formed where carbonate minerals precipitate out of ambient temperature water and thus represent discharge of groundwater out of dolomitic aquifers. The tufa waterfall is an important tourism attraction within the Blyde/Mohlatse River Canyon Nature Reserve.
1	B81A	Let_1.1	Stanford wetland	Floodplain	D	Moderate	A large floodplain wetland located within an afforested area upstream of Stanford Lake and within the Ebenezer Dam catchment. The wetland is well placed to provide water quality enhancement and flow maintenance functions. Afforestation has impacted on the current state of the system through decreased flow and alien vegetation encroachment.
1	B81B	Let_1.2	Tzaneen Dam wetland	Unchannelled valley bottom; Channelled valley bottom	D/E	Moderate	This unchannelled valley bottom wetland is located upstream of Tzaneen Dam within an afforested area. It is therefore well placed to provide a water quality enhancement and flow maintenance function. Afforestation has impacted on the current state of the system through decreased flow and alien vegetation encroachment.
2	B81D	Let_2.1	Thabina wetland	Channelled valley bottom	С	High	A large channelled valley bottom wetland within a densely populated rural area. The wetland is important from a direct use perspective with cultivation along and within its

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
							margins, collection of natural resources and collection of water observed. The location of the wetland within a densely populated area without formal sewage or sanitation systems makes it likely that the wetland plays a very important role in water quality maintenance.
9	B82G	Let_9.1	Baleni hot spring	Spring	В	Very High	This is one of only a few remaining undeveloped hot springs in the Olifants/Letaba System. The spring maintains a water temperature of around 42 degrees and supports a peat dome. Flow from the spring also supports small pools of water within the adjacent Klein-Letaba River. These pools were observed to support fish. The spring is understood to be of spiritual significance, and is also used by local women for salt harvesting. Salt harvesting is undertaken during the winter dry season when salt crystals form due to evaporation of water. Being a spring, groundwater abstraction could potentially pose a high risk to the system.
12	B83C	Let_12.1	Nshawu	Unchannelled valley bottom; Channelled valley bottom	С	High	The Nshawu vlei is a well-known Kruger National Park wetland system and FEPA wetland (Nel <i>et al.</i> , 2011). The system is currently heavily utilised by game and has a number of dams/excavations along its length. Headcutting and erosion has been identified as a risk to the system. Groundwater abstraction for water points in and around the wetland pose a potential risk to the condition of the system.
12	B83D	Let_12.2	Manyeleti/Makhadzi wetland	Unchannelled valley bottom	A	High	A large unchannelled valley bottom wetland in the Kruger National Park displaying seasonal to permanent saturation in some places. Found to be a wetter system than most of the other valley bottom wetlands in the area (and therefore unique) supporting numerous deeper pools of open water occupied by hippos. As is the case for most of these valley bottom wetlands, plant species diversity is likely fairly low, though a high diversity of faunal and avifaunal species are expected to be supported by the wetland.
-	B90B	Shi_1	Malahlapanga	Spring	E	High	This spring mire occurs within the boundaries of the Kruger National Park. The spring is geo-thermal in nature and supports several peat domes. The system is currently heavily impacted by trampling, overgrazing and to some extent runoff from a management road. This has resulted in erosion and lack of vegetation cover in and around the springs and wetland. Desiccation of the peat domes is likely the result of changes in groundwater (Grootjans <i>et al.</i> , 2010).
-	B90D	Shi_2	Mafiyeni	Spring	С	Very High	This spring mire occurs within the boundaries of the Kruger National Park. The spring is geo-thermal in nature and supports one large and little-disturbed cupola/dome plus a few smaller highly mineralised and desiccated domes (Grootjans <i>et al.</i> , 2010). The system has been somewhat impacted by trampling and overgrazing. This has resulted in reduced vegetation cover in and around the springs and wetland. Desiccation of the peat domes is likely the result of changes in groundwater (Grootjans <i>et al.</i> , 2010).

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	Motivation
-	B90A	Shi_3	Shisha tributary	Unchannelled valley bottom	A/B	Moderate	This is a large, seasonally saturated unchannelled valley bottom wetland located in the northern Kruger National Park which was flagged by Park Rangers as one of the largest and intact systems within the northern Kruger National Park. It is considered a good representative example of an unchannelled valley bottom wetland within the Lowveld Region of the Olifants River Catchment. Numerous locally rare antelope species utilise these wetlands within the Kruger National Park.
-	B90H	Shi_4	Dzombo	Channelled valley bottom	В	High	A channelled valley bottom wetland located within the Kruger National Park. The wetland supports a higher species and habitat diversity than most of the surrounding valley bottom wetlands and includes large stands of <i>Hyphaene coriacea</i> . Some impacts due to erosion and historical placement of water points are evident, while numerous road and track crossings also occur.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
1	B11E	Oli_1.1	Blesbokspruit wetland	Floodplain	E/F (Mbona et al. 2015)	High	С	Motivation: Floods are needed to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Rehabilitation measures should be implemented in this system to improve its current state. Existing vegetation types and structure must be improved.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
1	B11E	Oli_1.2	Rietspruit wetland	Unchannelled valley bottom; Channelled valley bottom	D (Mbona et al. 2015)	High	С	Motivation: Elevated flows are needed to inundate channelled sections of the wetland thereby providing the wetting regime required for supporting the vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on wetting for their life cycles. Increased channel incision threatens water retention within the wetland. Diffuse water distribution is required to optimise water quality enhancement functions. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.

Table 126: Wetland ecological specifications and monitoring requirements for the selected priority wetlands

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								improved within natural seasonal variability.	
								Rehabilitation measures should be implemented in this system to improve its current state.	
								<u>Motivation</u> : Erosion and channel incision threaten to undermine the water quality enhancement functions of the wetland. Diffuse water distribution is required to optimise water quality enhancement functions.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
1	B11D	Oli_1.3	Kriel wetland	Channelled valley bottom	C/D (Mbona et al. 2015)	Moderate	с	Protection, Maintenance and Management Requirements: Existing flow distribution and retention patterns must be improved.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
					2015)			Rehabilitation is required in order to prevent further loss in water quality enhancement functions.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.
1	B11F	Oli 1.4	Klipoortjiespruit	Unchannelled	D (Mbona	High	с	Motivation: Diffuse water distribution is required to optimise water quality enhancement functions. Protection, Maintenance and Management Requirements: It is essential to maintain the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the Hinh FIS	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland
		-	welland	valley bottom	2015)			Unchannelled nature of the wetland must be maintained.	and take fixed point photographs of key features from the closest access point/s.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
1	B11B	Oli_1.5	Koringspruit	Channelled	D	Moderate	С	Motivation:	PES to be verified and EIS and REC to be determined.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
			wetland	valley bottom (section of unchannelled valley bottom)	(Mbona et al. 2015)	(desktop)		Erosion and channel incision threaten to undermine the water quality enhancement functions of the wetland. Diffuse water distribution is required to optimise water quality enhancement functions. Protection, Maintenance and Management Requirements: Existing flow distribution and retention patterns must be improved. The unchannelled section of the wetland must be maintained in an unchannelled state. Rehabilitation is required in order to prevent channelization of the remaining unchannelled reach and further loss of wetland function.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	
								Motivation: Maintaining the unchannelled characteristic and vegetation structure of the system is essential for water quality enhancement.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
1	B11K	Oli_1.6	Klipspruit wetland	Unchannelled valley bottom	D (Mbona et al. 2015)	High (B1 Olifants PESEIS 2011)	С	Protection, Maintenance and Management Requirements: The unchannelled nature of the wetland must be maintained.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
1	B12A	Oli_1.7	Klein-Olifants tributary	Channelled valley bottom; Hillslope	D (Mbona et al.	High	С	Motivation: Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
				seepage	2015)			Lateral flow inputs are important to wet the valley bottom margins thereby providing the wetting regime required for supporting the wetland vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on seasonal saturation for their life cycles	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
								Protection, Maintenance and Management Requirements: Existing flow distribution and retention patterns must be maintained or improved.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
								Rehabilitation should be implemented to secure existing functions and values.	Desktop mapping of hillslope seepage wetlands contributing to the wetland system should be undertaken as part of the monitoring requirements.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.
								Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	
								Motivation: Maintenance of vegetation types and structure is required to	PES to be verified and the EIS and REC to be determined.
1	B12B	Oli_1.8	Matla wetland	Channelled valley bottom	C (Mbona et al. 2015)	Moderate (desktop)	с	Lateral flow inputs are important to wet the wetland margins thereby providing the wetting regime required for supporting the wetland vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on seasonal saturation for their life cycles	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
								Protection, Maintenance and Management Requirements: Existing flow distribution and retention patterns must be maintained or improved.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Rehabilitation should be implemented to secure existing functions and values.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Desktop mapping of hillslope seepage wetlands contributing to the wetland system.
								Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.
						Moderate		<u>Motivation</u> : Maintaining the unchannelled characteristic and vegetation structure of the system is essential for water quality enhancement.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
1	B12B	Oli_1.9	Woes- alleenspruit wetland	Unchannelled valley bottom	C (Mbona et al. 2015)	to High (B1 Olifants PESEIS 2011)	С	Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
			Rosmansnruit	linchannelled	C (Mhona	Moderate to High (B1		Motivation: Maintaining the unchannelled characteristic and vegetation structure of the system is essential for water quality enhancement.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
1	B12B	Oli_1.10	Bosmanspruit wetland	Unchannelled valley bottom	et al. 2015)	Olifants PESEIS 2011)	С	Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
1	B12C	Oi_1.11	Kopermyn wetland	Unchannelled valley bottom; Channelled valley bottom; Hillslope seepage	C (Mbona et al. 2015)	High	B/C	Motivation: Maintaining the unchannelled characteristic and vegetation structure of the system is essential for water quality enhancement. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Interflow is considered the key driver of the extensive hillslope seepage wetlands forming part of this wetland complex Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Rehabilitation should be implemented to secure existing functions and values. Interflow driving hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. Desktop mapping of hillslope seepage wetlands contributing to the wetland system. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
1	B11C	Oli_1.12	Debeerspruit/Pie kespruit floodplain	Floodplain	A/B (Mbona et al. 2015)	High	A/B	Motivation: Floods are needed to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Protection, Maintenance and Management Requirements: Any application for development including mining likely to impact this system, besides going through the normal licensing processes, should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC. It is essential to maintain or improve the existing flow distribution and retention patterns in the system in order to maintain the current PES category and High EIS.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	
1	B11A	Oli_1.13	Viskuile floodplain complex	Floodplain	C (Mbona et al. 2015)	High to Very High	A/B to B/C	Motivation: High flows are needed to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles. Lateral flow inputs also play an important role in wetting the floodplain verges, especially during lower rainfall years. Maintaining the unchannelled characteristic of parts of the systems as well as the vegetation structure of the system is essential for water quality enhancement. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Any application for development including mining likely to impact this system, besides going through the normal licencing expenses of the licencing expenses of licencing expenses of the licencing expenses of the licencing expenses of the licencing expenses of licencing expenses of the licencing expenses of l	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC. It is essential to maintain or improve the existing flow distribution and retention patterns in the system in order to	
								maintain the current PES category and High EIS. Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	
1	B11C	Oli_1.14	Steenkoolspruit floodplain	Floodplain	D (Mbona et al. 2015)	High	С	Motivation: Floods are needed to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles. Lateral flow inputs are also likely to play an important role in wetting the floodplain verges, especially during lower rainfall years. Protection, Maintenance and Management Requirements: Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Any application for development including mining likely to impact this system, besides going through the normal licensing processes, should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								It is essential to maintain or improve the existing flow distribution and retention patterns in the system in order to maintain the current PES category and High EIS. Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	
2	B20C	Oli_2.1	Elandsvlei pans	Pan/depressio n; Hillslope seepage	C (Mbona et al. 2015)	High	В	Motivation: Water inputs are important in shaping habitat characteristics of pan systems. Water quality is an important driver of pan biodiversity. Vegetation type and structure of the pan wetlands and associated hillslope seepage wetlands are important to support the African Grass Owls and other avifaunal species frequenting the pans. Protection, Maintenance and Management Requirements: No increase in cultivation or habitat transformation within the pan catchments should be permitted. Water quality impacts to the pan system must be restricted to ensure that the water and sediment chemistry remain within an acceptable normal range (anion and cation concentration to pan volume relationship) for this particular water chemistry pan type. Lateral flow inputs from the catchment and hillslope seepage wetlands must be protected through the application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Desktop mapping of landuse within the pan catchments. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. An African Grass Owl monitoring strategy should be developed and implemented in conjunction with a local conservation authority or NGO. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
2	B20B	Oli_2.2	Koffiespruit tributary	Unchannelled valley bottom	A/B (Mbona	Moderate to High	A/B	Motivation: Maintaining the unchannelled characteristic and vegetation	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
					et al. 2015)	(B2 Olifants PESEIS 2011)		structure of the system is essential to secure the biodiversity maintenance function performed by the wetland. Protection, Maintenance and Management Requirements: It is essential to maintain the existing flow distribution and retention patterns in the system in order to maintain the current PES category. Unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Rehabilitation should be implemented to secure existing functions and values.	dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
2	B20A	Oli_2.3	Delmas wetland	Unchannelled valley bottom	D (Mbona et al. 2015)	Moderate	С	Motivation: Drains and erosion threaten the mostly unchannelled nature of this wetland, as do increased flow from stormwater and waste water treatment works inputs. Maintaining the unchannelled characteristic and vegetation structure of the system is essential for water quality enhancement. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Any application resulting in an increase in hardened surfaces should be accompanied by a detailed stormwater management plan including details attenuation of storm flows.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Rehabilitation should be implemented to secure existing functions and values.	
2	B20A	Oli_2.4	Bronkhorstspruit tributary	Unchannelled valley bottom; Channelled valley bottom; Hillslope seepage	C (Mbona et al. 2015)	High	В	Motivation: Elevated flows are needed to inundate the channelled section of the wetland thereby providing the wetling regime required for supporting the wetland vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on seasonal saturation for their life cycles. Maintaining the unchannelled characteristic of sections of the wetland and maintaining the vegetation structure of the system is essential to secure the biodiversity maintenance and water quality maintenance functions performed by the wetland. Protection, Maintenance and Management Requirements: Any application for development including mining likely to impact this system, besides going through the normal licensing processes, should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC. The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. The overall biodiversity and viable populations of Red Data bird species must be maintained.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. An African Grass Owl monitoring strategy should be developed and implemented in conjunction with a local conservation authority or NGO.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
2	B20E	Oli_2.5	Wilge tributary	Floodplain; Channelled valley bottom	A/B to C (Mbona et al. 2015)	Moderate to High	B/C	Motivation:Elevated flows are needed to inundate the wetland thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles. Lateral flow inputs are also likely to play an important role in wetting the floodplain verges, especially during lower rainfall years. Diffuse water distribution is required to optimise water quality enhancement functions.Protection, Maintenance and Management Requirements:Existing vegetation types and structure must be maintained or improved within natural seasonal variability.Any application for development including mining likely to impact this system, besides going through the normal licensing processes, should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC.It is essential to maintain or improve the existing flow distribution and retention patterns in the system in order to maintain the current PES category and High EIS.Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.Rehabilitation should be implemented to secure existing functions and values.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
2	B20G	Oli_2.6	Zaalklap wetland	Unchannelled valley bottom	D (Mbona	High	С	Motivation: Maintaining the unchannelled characteristic and vegetation	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
					et al. 2015)			structure of the system is essential for water quality enhancement.	dominant vegetation types in the system using the most recent available remote imagery.
								Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
									DWS to liaise with the relevant authority (DEA, WfWetlands, CSIR) with regards to existing monitoring initiatives within the wetland
2	B20G	Oli_2.7	Saalboomspruit wetland	Unchannelled valley bottom; Channelled valley bottom	D (Mbona et al. 2015)	Moderate to High (B2 Olifants PESEIS 2011)	С	Motivation: Diffuse flows are important for maintaining habitat diversity and water quality enhancement functions. Historic drainage has impacted negatively on the wetland with headcut advancement threatening to cause further loss in functional values. Protection, Maintenance and Management Requirements: Rehabilitation is required to halt headcut advancement and improve both habitat and water quality enhancement values. It is essential to secure or improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improve within natural seasonal variability.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented
2	B20E	Oli_2.8	Upper Wilge	Floodplain	D	High	С	Motivation:	Compile an accurate desktop wetland basemap for the system prior

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
			River floodplain		(Mbona et al. 2015)	(B2 Olifants PESEIS 2011)		Floods are needed to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles. Lateral flow inputs are also likely to play an important role in wetting the floodplain verges, especially during lower rainfall years. Protection, Maintenance and Management Requirements: Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Any application for development including mining likely to impact this system, besides going through the normal licensing processes, should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC. It is essential to maintain or improve the existing flow distribution and retention patterns in the system in order to maintain the current PES category and High EIS. Lateral flow inputs from hillslope seepage wetlands must be protected through application of hydrological buffers determined via hydro-pedological assessments undertaken as part of EIA and/or WUL applications, and strict licensing conditions including monitoring of the systems should apply.	to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
3	B12E	Oli_3.1	Klein-Olifants tributary	Unchannelled valley bottom; Channelled valley bottom; Hillslope seepage	A/B to C (Mbona et al. 2015)	High (desktop)	В	Motivation: Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained.	PES to be verified and EIS and REC to be determined. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery.
IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
-----	-------------------------	---------------	-----------------------------	--	-------------------------------	-------------------	-----	--	--
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
									Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
4	B31A	Oli_4.1	Elands tributary wetland	Channelled valley bottom; Hillslope seepage	C (Nel et al., 2011)	High (desktop)	B/C	Motivation: Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Lateral flow inputs are important to wet the valley bottom margins thereby providing the wetting regime required for supporting the wetland vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on seasonal saturation for their life cycles. Interflow is the key driver of hillslope seepage wetlands. Protection, Maintenance and Management Requirements: Existing flow distribution and retention patterns must be maintained or improved. Rehabilitation should be implemented to secure existing functions and values. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Interflow supporting hillslope seepage wetlands and lateral flow inputs from hillslope seepage wetlands must be protected through application of suitable to these seepage wetlands must be protected through application of suitable to these seepage wetlands.	PES to be verified and EIS and REC to be determined. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. Desktop mapping of hillslope seepage wetlands contributing to the wetland system. A rehabilitation monitoring program should be implemented as part of the rehabilitation interventions once implemented.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								strict licensing conditions including monitoring of the systems should apply.	
								No increase in cultivation or habitat transformation within the hillslope seepage wetlands should be permitted.	
5	B51C	Oli_5.1	Makotswane	Channelled valley bottom Hillslope seepage	С	Very High	В	Motivation: This wetland is likely to provide an important flow regulatory and water quality enhancement function which may help to buffer the poor water quality in the section of the Olifants River that this wetland feeds. Protection, Maintenance and Management Requirements: Targeted wetland management actions and rehabilitation interventions should be implemented to safeguard and improve the wetland structure and functioning and associated peat and artesian springs. Any applications for groundwater use and/or abstraction in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A Giant Bullfrog monitoring strategy should be developed and implemented in conjunction with a local conservation authority or NGO. Undertake a baseline peat survey to determine extent, distribution and depth of peat in the system as well as humification. Repeat the survey every 10 years to determine changes and degradation related to peat.
6	B41A	Oli_6.1	Lakenvlei wetland complex	Unchannelled valley bottom Channelled valley bottom Hillslope seepage	A/B (Mbona et al. 2015)	Very High	A/B	Motivation: A constant baseflow should be maintained to ensure that the main valley bottom system is permanently inundated and side arms to the wetland remain permanently saturated. These flows will ensure that most of the marginal and instream vegetation remains inundated throughout the summer growing season and that the rooting zone is saturated throughout the year. This is a requirement for enabling	A wetland monitoring strategy/plan should be developed and implemented in conjunction with a local conservation authority or NGO. This should include monitoring of peat, Red Data bird species and key peat forming vegetation species. Desktop mapping of all dams in the system. Repeat every 3 years.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								 perennial obligate hydrophytes to complete their life cycle and reproduce. This is also a requirement for maintaining peat and supporting crane breeding habitat. <u>Protection, Maintenance and Management</u> <u>Requirements:</u> Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. Besides going through the normal licensing processes, any such application should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC. The overall biodiversity and viable populations of Red Data bird species must be maintained. No new dams should be constructed in the system without following detailed authorisation processs. No increase in cultivation or habitat transformation within the hillslope seepage wetlands should be permitted.	
6	B41B	Oli_6.2	Welgevonden wetland	Channelled valley bottom Hillslope seepage	A/B (Nel et al., 2011)	High to Very High (desktop)	A/B	Motivation: Maintenance of permanent water inputs to the wetland is critical for peat formation and to prevent oxidation. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply.	PES, EIS and REC to be verified. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								The overall biodiversity and viable populations of Red Data bird species must be maintained. No new dams should be constructed in the system without following a detailed authorisation process.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A crane monitoring programme should be developed and implemented in conjunction with an NGO/conservation authority to monitor crane populations
6	B41F	Oli_6.3	Draaikraal wetland 1	Channelled valley bottom	C (Nel et al., 2011)	High to Very High (B4 Olifants PESEIS 2011)	В	Motivation: Maintenance of permanent water inputs to the wetland is critical for peat formation and to prevent oxidation. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. The overall biodiversity and viable populations of Red Data bird species must be maintained. No new dams should be constructed in the system without following detailed authorisation process.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A crane monitoring programme should be developed and implemented in conjunction with an NGO/conservation authority to monitor crane populations.
6	B41F	Oli_6.4	Draaikraal wetland 2	Channelled valley bottom	A/B to C (Nel et al., 2011)	High to Very High (desktop)	A/B to B	Motivation: Maintenance of permanent water inputs to the wetland is critical for peat formation and to prevent oxidation. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system. both from an EIA and WUL	PES to be verified and EIS and REC to be determined. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								perspective, and strict licensing conditions including monitoring of the system should apply. The overall biodiversity and viable populations of Red Data bird species must be maintained. No new dams should be constructed in the system without following detailed authorisation process.	At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A crane monitoring programme should be developed and implemented in conjunction with an NGO/conservation authority to
6	B41F	Oli_6.5	Draaikraal wetland 3	Hillslope seepage	A/B (Nel et al., 2011)	High to Very High (desktop)	A/B	Motivation: Maintenance of permanent water inputs to the wetland is critical for peat formation and to prevent oxidation. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. The overall biodiversity and viable populations of Red Data bird species must be maintained. No new dams should be constructed in the system without following detailed authorisation process.	 monitor crane populations. PES, EIS and REC to be verified. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
6	B41F	Oli_6.8	Verloren Valei	Comprises a mosaic of hillslope	A/B (Nel et	Very High	A	<u>Motivation</u> : Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined.	implemented in conjunction with an NGO/conservation authority to monitor crane populations. DWS to liaise with the Mpumalanga Parks Board in terms of existing monitoring initiatives relevant to the wetlands at least every 3 years to assess whether or not the REC or BAS is being

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
				seepage wetlands and channelled and unchannelled valley bottom wetlands	al., 2011)			Protection, Maintenance and Management Requirements: The conservation measures and management practices as per the Ramsar Information Sheet (RIS) (https://rsis.ramsar.org/RISapp/files/RISrep/ZA11 10RIS.pdf) for Verloren Valei Nature Reserve must be implemented and maintained together with any additional management plans/actions that have subsequently been implemented by the Mpumalanga Parks Board.	maintained.
6	B41A	Oli_6.9	Belfast wetland complex	Unchannelled valley bottom Channelled valley bottom Hillslope seepage	A/B to C (Nel et al., 2011)	High to Very High (B4 Olifants PESEIS 2011)	B to A/B	Motivation: This wetland was prioritized for water quality enhancement. Maintaining the flow distribution and retention patterns and vegetation structure of the system is essential to maintain the water quality enhancement function. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. Besides going through the normal licensing processes, any such application should also include as a minimum an Intermediate Level Wetland Reserve which includes flow modelling (surface and groundwater including interflow) of scenarios to establish the potential impact in terms of achieving the REC.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
9	B60F	Oli_9.1	Krankloofpsruit wetland	Channelled valley bottom	C (Nel et al., 2011)	Moderate (desktop)	С	Motivation: This wetland was prioritized for water quality enhancement. Maintaining the flow distribution and retention patterns and vegetation structure of the system is essential to maintain the water quality enhancement function. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained.	PES to be verified and EIS and REC to be determined. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
9	B60H	Oli_9.2	Ohrigstad wetland	Channelled valley bottom	C (Nel et al., 2011)	Likely to be High to Very High (B4 Olifants PESEIS 2011)	В	or improved within natural seasonal variability. Motivation: This wetland was prioritized for water quality enhancement. Maintaining the flow distribution and retention patterns and vegetation structure of the system is essential to maintain the water quality enhancement function. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Unchannelled nature of sections of the wetland must be maintained.	PES, EIS and REC to be verified. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	achieving the Ecospecs, considering this in the context of achieving the REC.
10	B71G	Oli_10.1	Tufa waterfall	Tufa waterfall	В	Very High	A/B	Motivation: Tufa is formed where carbonate minerals precipitate out of ambient temperature water and thus represent permanent discharge of groundwater out of dolomitic aquifers. Protection, Maintenance and Management Requirements: Any applications for groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. Maintenance of water inputs to the wetland is critical for peat formation and to prevent oxidation. Site specific management measures should be developed in consultation with the local community to ensure the continued	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC.
13	B60C	Oli_13.1	Treur wetland	Hillslope seepage	C (Nel et al., 2011)	Likely to be Very High (B4 Olifants PESEIS 2011)	A/B	Protection of this system. Motivation: Maintenance of permanent water inputs to the wetland is critical for peat formation and to prevent oxidation. Maintenance of vegetation types and structure is required to ensure that existing biodiversity values are not undermined. Protection, Maintenance and Management Requirements: Any applications for development, abstraction or groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. A viable populations of the Treur River Barb fish species should be maintained. No increase in afforestation or other surface water reduction activities within the wetland catchment.	PES to be verified and EIS and REC to be determined. Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. Desktop mapping of catchment landuse focussing on extent of afforestation. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
									Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A Treur River Barb monitoring programme should be developed and implemented in conjunction with an NGO/conservation authority to monitor crane populations.
13	B60D	Oli_13.2	Kadishi waterfall	Tufa waterfall	A/B	Very High	A/B	Motivation: Tufa is formed where carbonate minerals precipitate out of ambient temperature water and thus represent permanent discharge of groundwater out of dolomitic aquifers. Protection, Maintenance and Management Requirements: Any applications for groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. Maintenance of water inputs to the wetland is critical for peat formation and to prevent oxidation. Site specific management measures should be developed in consultation with the relevant conservation authority (Blyde/Motlatse River Canyon Nature Reserve).	A wetland monitoring strategy/plan should be developed and implemented in conjunction with the relevant conservation authority (Blyde/Motlatse River Canyon Nature Reserve).
1	B81A	Let_1.1	Stanford wetland	Floodplain	D	Moderate	С	Motivation: This wetland is likely to provide important water quality enhancement and flow maintenance functions in the Ebenezer Dam catchment. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								Targeted wetland management actions and rehabilitation interventions should be implemented to improve the wetland structure and functioning. This must address in particular afforestation related rehabilitation measures.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the targeted wetland management actions and rehabilitation interventions once implemented.
1	B81B	l et 12	Tzaneen Dam	Unchannelled valley bottom	D/F	Moderate	C/D	Motivation: This wetland is likely to provide important water quality enhancement and flow maintenance functions. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s.
		-	wetland	Channelled valley bottom				Existing vegetation types and structure must be maintained or improved within natural seasonal variability. Targeted wetland management actions and rehabilitation interventions should be implemented to improve the wetland structure and functioning. This must address in particular afforestation related rehabilitation measures.	Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. A rehabilitation monitoring program should be implemented as part of the targeted wetland management actions and rehabilitation interventions once implemented.
2	B81D	Let_2.1	Thabina wetland	Channelled valley bottom	С	High	В	Motivation: This wetland is likely to provide an important flow regulatory and water quality enhancement function. The wetland is important form a direct human use perspective. Protection, Maintenance and Management Requirements: The unchannelled nature of sections of the wetland must be maintained. Existing vegetation types and structure must be maintained or improved within natural seasonal variability.	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of channelization and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								interventions should be investigated and implemented if required to improve the wetland structure and functioning. Site specific management measures should be developed in consultation with the local community to ensure the maintenance and controlled utilisation of the wetland	
9	B82G	Let_9.1	Baleni hot spring	Spring	В	Very High	A/B	Motivation: A culturally important site and one of only a few remaining undeveloped thermal hot springs in the catchment. This is a peatland with high ecological importance. Maintaining permanent flow in the system is essential for its maintenance and the protection of the peat. Protection, Maintenance and Management Requirements: Any applications for groundwater use in the area will need to consider the impacts on this system, both from an EIA and WUL perspective, and strict licensing conditions including monitoring of the system should apply. Maintenance of water inputs to the wetland is critical for peat formation and to prevent oxidation. Site specific management measures should be developed in consultation with the local community to ensure the continued	Compile an accurate desktop wetland basemap for the system prior to the start of monitoring and map the extent of erosion and dominant vegetation types in the system using the most recent available remote imagery. At the same time undertake a rapid PES assessment of the wetland and take fixed point photographs of key features from the closest access point/s. Repeat the above every 3 years and assess and report on achieving the Ecospecs, considering this in the context of achieving the REC. Undertake a baseline peat survey to determine extent, distribution and depth of peat in the system as well as humification. Repeat the survey every 10 years to determine changes and degradation
12	B83C	Let_12.1	Nshawu	Unchannelled valley bottom Channelled valley bottom	С	High	В	protection of this system. Motivation: Being one of the largest wetlands in the Kruger National Park, this wetland has important biodiversity and functional value. Opportunities exist to improve the current state of the system through management interventions. Protection, Maintenance and Management Requirements: It is essential to improve the existing flow distribution and retention patterns in the system in order to improve the current PES category and maintain the High EIS. Targeted wetland management actions and rehabilitation interventions should be implemented to improve the wetland	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								structure and functioning. This must address in particular the channelization that has developed in the system.	
12	B83D	Let_12.2	Manyeleti/Makha dzi wetland	Unchannelled valley bottom	A	High	A	Motivation: Being one of the larger wetlands in the Kruger National Park, this wetland has important biodiversity and functional value. The current state of the system should be maintained. Protection, Maintenance and Management Requirements: It is essential to maintain the existing flow distribution and retention patterns in the system in order to maintain the current PES category and maintain the High EIS. No new activities that could lead to flow concentration should be allowed in the system without following a detailed authorisation process. Groundwater abstraction in the immediate vicinity of the wetland should be strictly controlled.	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.
-	B90B	Shi_1	Malahlapanga	Spring	E	High	C/D	Motivation: Being one of only a few thermal hot springs containing peat in the Kruger National Park, this wetland has important ecological value. Opportunities exist to improve the current state of the system through management interventions. Protection, Maintenance and Management Requirements: Targeted wetland management actions and rehabilitation interventions should be implemented to try to improve the wetland structure and functioning. Maintenance of water inputs to the wetland is critical for peat formation and to prevent oxidation	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
-	B90D	Shi_2	Mafiyeni	Spring	С	Very High	A/B	Motivation: Being one of only a few thermal hot springs containing peat in the Kruger National Park, this wetland has important ecological value. Opportunities exist to improve the current state of the system through management interventions. Protection, Maintenance and Management Requirements: Targeted wetland management actions and rehabilitation interventions should be implemented to try to improve the wetland structure and functioning. Maintenance of water inputs to the wetland is critical for peat formation and to prevent oxidation.	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.
-	B90A	Shi_3	Shisha tributary	Unchannelled valley bottom	A/B	Moderate	A/B	Motivation: Being one of the larger wetlands in the Kruger National Park, this wetland has important biodiversity and functional value. The current state of the system should be maintained. Protection, Maintenance and Management Requirements: It is essential to maintain the existing flow distribution and retention patterns in the system in order to maintain the current PES category and maintain the High EIS. No new activities that could lead to flow concentration should be allowed in the system without following a detailed authorisation process.	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.
-	B90H	Shi_4	Dzombo	Channelled valley bottom	В	High	В	Motivation: Being one of the larger wetlands in the Kruger National Park, this wetland has important biodiversity and functional value. Opportunities exist to improve the current state of the system through management interventions. Protection, Maintenance and Management Requirements: It is essential to maintain the existing flow distribution and retention patterns in the system in order to maintain the current PES category and maintain the High EIS.	A wetland monitoring strategy/plan should be developed and implemented in conjunction with SANParks.

IUA	Quaternary Catchment	Wetland ID	Wetland Name	Wetland Type	PES	EIS	REC	Ecological Specifications	Monitoring Requirements
								No new activities that could lead to flow concentration should be allowed in the system without following a detailed authorisation process.	

7 REFERENCES

Department of Water Affairs. 1998. Quality of Domestic Water Supplies, Volume 1: Assessment Guide. The Department of Water Affairs and Forestry, The Department of Health, and the Water Research Commission, Second Edition, 1998. Water Research Commission No: TT101-98.

Department of Water Affairs. 2001. Groundwater Resources Situation Assessment. Prepared by WSM Civil Engineers, Hydrogeologists & Project Managers (Pty) Ltd.

Department of Water Affairs. 2009. Groundwater Reserve Determination for the Olifants River Catchment. Resource Directed Measures Unit Report No. RDM/WMA4 /02/CON/INT/0109. Study No. WP9437/4 & 2008-188. Prepared by SRK Consulting (SA) (Pty) Ltd.

Department of Water Affairs, South Africa. July 2011.Directorate Water Resource Classification. Classification of Significant Water Resources in the Olifants Water Management Area (WMA 4): Integrated Units of Analysis (IUA) Delineation Report. Report No. RDM/WMA04/00/CON/CLA/0311.

Department of Water Affairs, South Africa, February 2013. Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment. Status Quo assessment, IUA and biophysical node delineation and identification. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. DWA Report, RDM/WMA02/00/CON/CLA/0113.

Department of Water Affairs, South Africa, May 2014. Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment. Resource Quality Objectives. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. DWA Report, RDM/WMA02/00/CON/CLA/0314.

Department of Water Affairs and Forestry. 1999. Resource Directed Measures for Protection of Water Resources. Volume 4. Wetland Ecosystems Version 1.0, Pretoria.

Department of Water Affairs and Forestry 2001.Olifants River Ecological Water Requirements Assessment. Technical Input into the Ecological Management Class. March 2001. Final report. Report No. PB 000-00-5 499. Directorate: Water Resources Planning. Pretoria.

Department of Water Affairs and Forestry.2006. Letaba Catchment Reserve Determination Study – Groundwater Report. Directed Measures Unit. Report No. RDM/B800/02/CON/COMP/0504.Prepared by WSM Civil Engineers, Hydrogeologists & Project Managers (Pty) Ltd.

Department of Water and Sanitation. 2014. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): Resource Quality Objectives and Numerical Limits Report. Report No.: RDM/WMA04/00/CON/RQO/0214. Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14(vi). Pietermaritzburg, South Africa.

Kleynhans, C.J. 1999. A procedure for determination of the ecological Reserve for the purpose of the national water balance model for South African Rivers. Institute for Water Quality Studies. Department of Water Affairs and Forestry, Pretoria.

Kotze, D.C, Marneweck, G.C., Batchelor, A.L., Lindley, D. and Collins, N. (2007).WET EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands. Water Research Commission Report TT339/09, Pretoria, South Africa.

Marneweck, G.C. and Batchelor, A. (2002).Wetland inventory and classification. In: Ecological and economic evaluation of wetlands in the upper Olifants River catchment. (Palmer, R.W., Turpie, J., Marneweck, G.C and Batchelor (eds.). Water Research Commission Report No. 1162/1/02, Pretoria, South Africa.

Mbona N., Job N., Smith J., Nel J., Holness S., Memani S. and Dini J. 2015. Supporting better decision-making around coal mining in the Mpumalanga Highveld through the development of mapping tools and refinement of spatial data on wetlands. Water Research Commission Report No TT 614/14, Pretoria, South Africa.

Nel, J.L., Murray, K.M., Maherry, A.M, Petersen, C.P., Roux, D.J, Driver, A., Hill, L., van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L. and Nienaber, S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas Project.Water Research Commission (WRC) Report No. 1801/1/11, Pretoria, South Africa.

SANBI (2009).Further Development of a Proposed National Wetland Classification System for South Africa. Primary Project Report. Prepared by the Freshwater Consulting Group (FCG) for the South African National Biodiversity Institute (SANBI), Pretoria, South Africa.

APPENDIX A

RULE AND EWR TABLES

RULE AND EWR TABLES INCLUDE AS ELECTRONIC FILES